Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 105

Full-Text Articles in Physical Sciences and Mathematics

And Or Not – The System, The Body And Time, Brian Fay Jan 2015

And Or Not – The System, The Body And Time, Brian Fay

Articles

This catalogue text discusses artists and artworks featured in the exhibition BOOLEAN EXPRESSIONS: Contemporary Art and Mathematical Data, presented at The Lewis Glucksman Gallery, University College Cork, Ireland, 23 July – 8 November 2015. For an overview of the exhibition see the link https://vimeo.com/137620854


Will Oscillating Wave Surge Converters Survive Tsunamis?, Laura Cooke, P. Christodoulides, E. Renzi, T. Stefanakis, F. Dias Jan 2015

Will Oscillating Wave Surge Converters Survive Tsunamis?, Laura Cooke, P. Christodoulides, E. Renzi, T. Stefanakis, F. Dias

Articles

With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC) could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, …


A Class Of High-Order Runge-Kutta-Chebyshev Stability Polynomials, Stephen O'Sullivan Jan 2015

A Class Of High-Order Runge-Kutta-Chebyshev Stability Polynomials, Stephen O'Sullivan

Articles

The analytic form of a new class of factorized Runge-Kutta-Chebyshev (FRKC) stability polynomials of arbitrary order N is presented. Roots of FRKC stability polynomials of degree L = MN are used to construct explicit schemes comprising L forward Euler stages with internal stability ensured through a sequencing algorithm which limits the internal amplification factors to ~ L2. The associated stability domain scales as M2 along the real axis. Marginally stable real-valued points on the interior of the stability domain are removed via a prescribed damping procedure. By construction, FRKC schemes meet all linear order conditions; for nonlinear …


A Hamiltonian Approach To Wave-Current Interactions In Two-Layer Fluids, Adrian Constantin, Rossen Ivanov Jan 2015

A Hamiltonian Approach To Wave-Current Interactions In Two-Layer Fluids, Adrian Constantin, Rossen Ivanov

Articles

We provide a Hamiltonian formulation for the governing equations describing the two-dimensional nonlinear interaction between coupled surfacewaves, internalwaves, and an underlying current with piecewise constant vorticity, in a two-layered fluid overlying a flat bed. This Hamiltonian structure is a starting point for the derivation of simpler models, which can be obtained systematically by expanding the Hamiltonian in dimensionless parameters. These enable an in-depth study of the coupling between the surface and internal waves, and how both these wave systems interact with the background current.


On The Dynamics Of Internal Waves Interacting With The Equatorial Undercurrent, Alan Compelli, Rossen Ivanov Jan 2015

On The Dynamics Of Internal Waves Interacting With The Equatorial Undercurrent, Alan Compelli, Rossen Ivanov

Articles

The interaction of the nonlinear internal waves with a nonuniform current with a specific form, characteristic for the equatorial undercurrent, is studied. The current has no vorticity in the layer, where the internal wave motion takes place. We show that the nonzero vorticity that might be occuring in other layers of the current does not affect the wave motion. The equations of motion are formulated as a Hamiltonian system.


Dressing Method And Quadratic Bundles Related To Symmetric Spaces: Vanishing Boundary Conditions, Tihomir Valchev Sep 2014

Dressing Method And Quadratic Bundles Related To Symmetric Spaces: Vanishing Boundary Conditions, Tihomir Valchev

Articles

We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m+n)/S(U(m) x U(n)). The simplest representative of the corresponding integrable hierarchy is given by a multi-component Kaup-Newell derivative nonlinear Schroedinger equation which serves as a motivational example for our general considerations. We extensively discuss how one can apply Zakharov-Shabat's dressing procedure to derive reflectionless potentials obeying zero boundary conditions. Those could be used for one to construct fast decaying solutions to any nonlinear equation belonging to the same hierarchy. One can distinguish between generic soliton type solutions and rational solutions.


A Soft Condensed Matter Approach Towards Mathematical Modelling Of Mass Transport And Swelling In Food Grains, Michael Chapwanya, N. Misra Aug 2014

A Soft Condensed Matter Approach Towards Mathematical Modelling Of Mass Transport And Swelling In Food Grains, Michael Chapwanya, N. Misra

Articles

Soft condensed matter (SCM) physics has recently gained importance for a large class of engineering materials. The treatment of food materials from a soft matter perspective, however, is only at the surface and is gaining importance for understanding the complex phenomena and structure of foods. In this work, we present a theoretical treatment of navy beans from a SCM perspective to describe the hydration kinetics. We solve the transport equations within a porous matrix and employ the Flory–Huggin’s equation for polymer–solvent mixture to balance the osmotic pressure. The swelling of the legume seed is modelled as a moving boundary with …


One-Dimensional Weakly Nonlinear Model Equations For Rossby Waves, David Henry, Rossen Ivanov Aug 2014

One-Dimensional Weakly Nonlinear Model Equations For Rossby Waves, David Henry, Rossen Ivanov

Articles

In this study we explore several possibilities for modelling weakly nonlinear Rossby waves in fluid of constant depth, which propagate predominantly in one direction. The model equations obtained include the BBM equation, as well as the integrable KdV and Degasperis-Procesi equations.


Resilient Digital Image Watermarking For Document Authentication, Jonathan Blackledge, Oleksandr Iakovenko Jan 2014

Resilient Digital Image Watermarking For Document Authentication, Jonathan Blackledge, Oleksandr Iakovenko

Articles

Abstract—We consider the applications of the Discrete Cosine Transform (DCT) and then a Chirp coding method for producing a highly robust system for watermarking images using a block partitioning approach subject to a self-alignment strategy and bit error correction. The applications for the algorithms presented and the system developed include the copyright protection of images and Digital Right Management for image libraries, for example. However, the principal focus of the research reported in this paper is on the use of printscan and e-display-scan image authentication for use in e-tickets where QR code, for example, are embedded in a full colour …


Hamiltonian Approach To The Modeling Of Internal Geophysical Waves With Vorticity, Alan Compelli Jan 2014

Hamiltonian Approach To The Modeling Of Internal Geophysical Waves With Vorticity, Alan Compelli

Articles

We examine a simplified model of internal geophysical waves in a rotational 2-dimensional water-wave system, under the influence of Coriolis forces and with gravitationally induced waves. The system consists of a lower medium, bound underneath by an impermeable flat bed, and an upper lid. The 2 media have a free common interface. Both media have constant density and constant (non-zero) vorticity. By examining the governing equations of the system we calculate the Hamiltonian of the system in terms of its conjugate variables and perform a variable transformation to show that it has canonical Hamiltonian structure. We then linearize the system, …


Symmetry And Reductions Of Integrable Dynamical Systems: Peakon And The Toda Chain Systems, Vladimir Gerdjikov, Rossen Ivanov, Gaetano Vilasi Jan 2014

Symmetry And Reductions Of Integrable Dynamical Systems: Peakon And The Toda Chain Systems, Vladimir Gerdjikov, Rossen Ivanov, Gaetano Vilasi

Articles

We are analyzing several types of dynamical systems which are both integrable and important for physical applications. The first type are the so-called peakon systems that appear in the singular solutions of the Camassa-Holm equation describing special types of water waves. The second type are Toda chain systems, that describe molecule interactions. Their complexifications model soliton interactions in the adiabatic approximation. We analyze the algebraic aspects of the Toda chains and describe their real Hamiltonian forms.


A Linearised Singularly Perturbed Convection-Diffusion Problem With An Interior Layer, Eugene O'Riordan, Jason Quinn Jan 2014

A Linearised Singularly Perturbed Convection-Diffusion Problem With An Interior Layer, Eugene O'Riordan, Jason Quinn

Articles

A linear time dependent singularly perturbed convection-diffusion problem is examined. The convective coefficient contains an interior layer (with a hyperbolic tangent profile), which in turn induces an interior layer in the solution. A numerical method consisting of a monotone finite difference operator and a piecewise-uniform Shishkin mesh is constructed and analysed. Neglecting logarithmic factors, first order parameter uniform convergence is established.


Hamiltonian Formulation Of 2 Bounded Immiscible Media With Constant Non-Zero Vorticities And A Common Interface, Alan Compelli Jan 2014

Hamiltonian Formulation Of 2 Bounded Immiscible Media With Constant Non-Zero Vorticities And A Common Interface, Alan Compelli

Articles

We examine a 2-dimensional water-wave system, with gravitationally induced waves, consisting of a lower medium bound underneath by an impermeable flat bed and an upper medium bound above by an impermeable lid such that the 2 media have a free common interface. Both media have constant density and constant (non-zero) vorticity. By examining the governing equations of the system we calculate the Hamiltonian of the system in terms of it's conjugate variables and per- form a variable transformation to show that it has canonical Hamiltonian structure.


A Numerical Method For A Nonlinear Singularly Perturbed Interior Layer Problem Using An Approximate Layer Location, Jason Quinn Jan 2014

A Numerical Method For A Nonlinear Singularly Perturbed Interior Layer Problem Using An Approximate Layer Location, Jason Quinn

Articles

A class of nonlinear singularly perturbed interior layer problems is examined in this paper. Solutions exhibit an interior layer at an a priori unknown location. A numerical method is presented that uses a piecewise uniform mesh refined around approximations to the first two terms of the asymptotic expansion of the interior layer location. The first term in the expansion is used exactly in the construction of the approximation which restricts the range of problem data considered. The method is shown to converge point-wise to the true solution with a first order convergence rate (overlooking a logarithmic factor) for sufficiently small …


Matrix G-Strands, Darryl Holm, Rossen Ivanov Jan 2014

Matrix G-Strands, Darryl Holm, Rossen Ivanov

Articles

We discuss three examples in which one may extend integrable Euler–Poincare ordinary differential equations to integrable Euler–Poincare partial differential
equations in the matrix G-Strand context. After describing matrix G-Strand examples for SO(3) and SO(4) we turn our attention to SE(3) where the matrix G-Strand equations recover the exact rod theory in the convective representation. We then find a zero curvature representation of these equations and establish the conditions under which they are completely integrable. Thus, the G-Strand equations turn out to be a rich source of integrable systems. The treatment is meant to be expository and most concepts are explained …


On The Quadratic Bundles Related To Hermitian Symmetric Spaces, Tihomir Valchev Mar 2013

On The Quadratic Bundles Related To Hermitian Symmetric Spaces, Tihomir Valchev

Articles

We develop the direct scattering problem for quadratic bundles associated to Hermitian symmetric spaces. We adapt the dressing method for quadratic bundles which allows us to find special solutions to multicomponent derivative Schrodinger equation for instance. The latter is an infinite dimensional Hamiltonian system possessing infinite number of integrals of motion. We demonstrate how one can derive them by block diagonalization of the corresponding Lax pair.


Particle Trajectories In Extreme Stokes Waves Over Inifinte Depth, Tony Lyons Jan 2013

Particle Trajectories In Extreme Stokes Waves Over Inifinte Depth, Tony Lyons

Articles

We investigate the velocity field of fluid particles in an extreme water wave over infinite depth. It is shown that the trajectories of the particles within the fluid and along the free surface do not form closed paths over the course of one period, but rather undergo a positive drift in the direction of wave propagation. In addition it is shown that the wave crest cannot form a stagnation point despite the velocity of the fluid being zero there.


G-Strands And Peakon Collisions On Diff(R), Darryl Holm, Rossen Ivanov Jan 2013

G-Strands And Peakon Collisions On Diff(R), Darryl Holm, Rossen Ivanov

Articles

A G-strand is a map g : R x R --> G for a Lie group G that follows from Hamilton's principle for a certain class of G-invariant Lagrangians. Some G-strands on finite-dimensional groups satisfy 1+1 space-time evolutionary equations that admit soliton solutions as completely integrable Hamiltonian systems. For example, the SO(3)-strand equations may be regarded physically as integrable dynamics for solitons on a continuous spin chain. Previous work has shown that G-strands for diffeomorphisms on the real line possess solutions with singular support (e.g. peakons). This paper studies collisions of such singular solutions of G-strands when G = Diff( …


On The Persistence Properties Of The Cross-Coupled Camassa-Holm System, David Henry, Darryl Holm, Rossen Ivanov Jan 2013

On The Persistence Properties Of The Cross-Coupled Camassa-Holm System, David Henry, Darryl Holm, Rossen Ivanov

Articles

In this paper we examine the evolution of solutions, that initially have compact support, of a recently-derived system of cross-coupled Camassa-Holm equations. The analytical methods which we employ provide a full picture for the persistence of compact support for the momenta. For solutions of the system itself, the answer is more convoluted, and we determine when the compactness of the support is lost, replaced instead by an exponential decay rate.


Dark Solitons Of The Qiao's Hierarchy, Rossen Ivanov, Tony Lyons Nov 2012

Dark Solitons Of The Qiao's Hierarchy, Rossen Ivanov, Tony Lyons

Articles

We obtain a class of soliton solutions of the integrable hierarchy which has been put forward in a series of works by Z. Qiao. The soliton solutions are in the class of real functions approaching constant value fast enough at infinity, the so-called 'dark solitons'.


G-Strands, Darryl Holm, Rossen Ivanov, James Percival Nov 2012

G-Strands, Darryl Holm, Rossen Ivanov, James Percival

Articles

A G-strand is a map g(t,s): RxR --> G for a Lie group G that follows from Hamilton's principle for a certain class of G-invariant Lagrangians. The SO(3)-strand is the G-strand version of the rigid body equation and it may be regarded physically as a continuous spin chain. Here, SO(3)K-strand dynamics for ellipsoidal rotations is derived as an Euler-Poincar'e system for a certain class of variations and recast as a Lie-Poisson system for coadjoint flow with the same Hamiltonian structure as for a perfect complex fluid. For a special Hamiltonian, the SO(3) …


Cyclic Universe With An Inflationary Phase From A Cosmological Model With Real Gas Quintessence, Rossen Ivanov, Emil Prodanov Oct 2012

Cyclic Universe With An Inflationary Phase From A Cosmological Model With Real Gas Quintessence, Rossen Ivanov, Emil Prodanov

Articles

Phase-plane stability analysis of a dynamical system describing the Universe as a two-fraction uid containing baryonic dust and real virial gas quintessence is presented. Existence of a stable periodic solution experiencing in ationary periods is shown. A van der Waals quintessence model is revisited and cyclic Universe solution again found.


Stiefel And Grassmann Manifolds In Quantum Chemistry, Eduardo Chiumiento, Michael Melgaard Apr 2012

Stiefel And Grassmann Manifolds In Quantum Chemistry, Eduardo Chiumiento, Michael Melgaard

Articles

We establish geometric properties of Stiefel and Grassmann manifolds which arise in relation to Slatertype variational spaces in many-particle Hartree-Fock theory and beyond. In particular, we prove thatthey are analytic homogeneous spaces and submanifolds of the space of bounded operators on the single-particle Hilbert space. As a by-product we obtain that they are complete Finsler manifolds. These geometric properties underpin state-of-the-art results on existence of solutions to Hartree-Fock type equations.


On Soliton Interactions For A Hierarchy Of Generalized Heisenberg Ferromagnetic Models On Su(3)/S(U(1) $\Times$ U(2)) Symmetric Space, Vladimir Gerdjikov, Georgi Grahovski, Alexander Mikhailov, Tihomir Valchev Mar 2012

On Soliton Interactions For A Hierarchy Of Generalized Heisenberg Ferromagnetic Models On Su(3)/S(U(1) $\Times$ U(2)) Symmetric Space, Vladimir Gerdjikov, Georgi Grahovski, Alexander Mikhailov, Tihomir Valchev

Articles

We consider an integrable hierarchy of nonlinear evolution equations (NLEE) related to linear bundle Lax operator L. The Lax representation is Z2 \times Z2 reduced and is naturally associated with the symmetric space SU(3)/S(U(1) \times U(2)). The simplest nontrivial equation in the hierarchy is a generalization of Heisenberg ferromagnetic model. We construct the N-soliton solutions for an arbitrary member of the hierarchy by using the Zakharov-Shabat dressing method with an appropriately chosen dressing factor. Two types of soliton solutions: quadruplet and doublet solitons are found. The one-soliton solutions of NLEEs with even and odd dispersion laws have different properties. In …


The Generalised Zakharov-Shabat System And The Gauge Group Action, Georgi Grahovski Jan 2012

The Generalised Zakharov-Shabat System And The Gauge Group Action, Georgi Grahovski

Articles

The generalized Zakharov-Shabat systems with complex-valued non-regular Cartan elements and the systems studied by Caudrey, Beals and Coifman (CBC systems) and their gauge equivalent are studied. This study includes: the properties of fundamental analytical solutions (FAS) for the gauge-equivalent to CBC systems and the minimal set of scattering data; the description of the class of nonlinear evolutionary equations, solvable by the inverse scattering method, and the recursion operator, related to such systems; the hierarchies of Hamiltonian structures. The results are illustrated on the example of the multi-component nonlinear Schrodinger (MNLS) equations and the corresponding gauge-equivalent multi-component Heisenberg ferromagnetic (MHF) type …


The Generalised Zakharov-Shabat System And The Gauge Group Action, Georgi Grahovski Jan 2012

The Generalised Zakharov-Shabat System And The Gauge Group Action, Georgi Grahovski

Articles

The generalized Zakharov–Shabat systems with complex-valued non-regular Cartan elements and the systems studied by Caudrey, Beals and Coifman (CBC systems) and their gauge equivalent are studied. This study includes: the properties of fundamental analytical solutions (FAS) for the gauge-equivalent to CBC systems and the minimal set of scattering data; the description of the class of nonlinear evolutionary equations, solvable by the inverse scattering method, and the recursion operator, related to such systems; the hierarchies of Hamiltonian structures. The results are illustrated on the example of the multi-component nonlinear Schr¨odinger (MNLS) equations and the corresponding gauge-equivalent multi-component Heisenberg ferromagnetic (MHF) type …


Integrable Models For Shallow Water With Energy Dependent Spectral Problems, Rossen Ivanov, Tony Lyons Jan 2012

Integrable Models For Shallow Water With Energy Dependent Spectral Problems, Rossen Ivanov, Tony Lyons

Articles

We study the inverse problem for the so-called operators with energy depending potentials. In particular, we study spectral operators with quadratic dependence on the spectral parameter. The corresponding hierarchy of integrable equations includes the Kaup–Boussinesq equation. We formulate the inverse problem as a Riemann–Hilbert problem with a Z2 reduction group. The soliton solutions are explicitly obtained.


Second Gradient Viscoelastic Fluids: Dissipation Principle And Free Energies, G. Amendola, M. Fabrizio, John Murrough Golden Jan 2012

Second Gradient Viscoelastic Fluids: Dissipation Principle And Free Energies, G. Amendola, M. Fabrizio, John Murrough Golden

Articles

We consider a generalization of the constitutive equation for an incompressible second order fluid, by including thermal and viscoelastic effects in the expression for the stress tensor. The presence of the histories of the strain rate tensor and its gradient yields a non-simple material, for which the laws of thermodynamics assume a modified form. These laws are expressed in terms of the internal mechanical power which is evaluated, using the dynamical equation for the fluid. Generalized thermodynamic constraints on the constitutive equation are presented. The required properties of free energy functionals are discussed. In particular, it is shown that they …


On The N-Wave Equations And Soliton Interactions In Two And Three Dimensions, Vladimir S. Gerdjikov, Rossen Ivanov, Assen V. Kyuldjiev Oct 2011

On The N-Wave Equations And Soliton Interactions In Two And Three Dimensions, Vladimir S. Gerdjikov, Rossen Ivanov, Assen V. Kyuldjiev

Articles

Several important examples of the N-wave equations are studied. These integrable equations can be linearized by formulation of the inverse scattering as a local Riemann–Hilbert problem (RHP). Several nontrivial reductions are presented. Such reductions can be applied to the generic N-wave equations but mainly the 3- and 4-wave interactions are presented as examples. Their one and two-soliton solutions are derived and their soliton interactions are analyzed. It is shown that additional reductions may lead to new types of soliton solutions. In particular the 4-wave equations with Z2xZ2 reduction group allow breather-like solitons. Finally it is demonstrated that …


Euler Equations On A Semi-Direct Product Of The Diffeomorphisms Group By Itself, Joachim Escher, Rossen Ivanov, Boris Kolev Sep 2011

Euler Equations On A Semi-Direct Product Of The Diffeomorphisms Group By Itself, Joachim Escher, Rossen Ivanov, Boris Kolev

Articles

The geodesic equations of a class of right invariant metrics on the semi-direct product of two Diff(S) groups are studied. The equations are explicitly described, they have the form of a system of coupled equations of Camassa-Holm type and possess singular (peakon) solutions. Their integrability is further investigated, however no compatible bi-Hamiltonian structures on the corresponding dual Lie algebra are found.