Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Efficiency Of Homomorphic Encryption Schemes, Kyle Yates Aug 2022

Efficiency Of Homomorphic Encryption Schemes, Kyle Yates

All Theses

In 2009, Craig Gentry introduced the first fully homomorphic encryption scheme using bootstrapping. In the 13 years since, a large amount of research has gone into improving efficiency of homomorphic encryption schemes. This includes implementing leveled homomorphic encryption schemes for practical use, which are schemes that allow for some predetermined amount of additions and multiplications that can be performed on ciphertexts. These leveled schemes have been found to be very efficient in practice. In this thesis, we will discuss the efficiency of various homomorphic encryption schemes. In particular, we will see how to improve sizes of parameter choices in homomorphic …


Optimal First Order Methods For Reducing Gradient Norm In Unconstrained Convex Smooth Optimization, Yunheng Jiang Aug 2022

Optimal First Order Methods For Reducing Gradient Norm In Unconstrained Convex Smooth Optimization, Yunheng Jiang

All Theses

In this thesis, we focus on convergence performance of first-order methods to compute an $\epsilon$-approximate solution of minimizing convex smooth function $f$ at the $N$-th iteration.

In our introduction of the above research question, we first introduce the gradient descent method with constant step size $h=1/L$. The gradient descent method has a $\mathcal{O}(L^2\|x_0-x^*\|^2/\epsilon)$ convergence with respect to $\|\nabla f(x_N)\|^2$. Next we introduce Nesterov’s accelerated gradient method, which has an $\mathcal{O}(L\|x_0-x^*\|\sqrt{1/\epsilon})$ complexity in terms of $\|\nabla f(x_N)\|^2$. The convergence performance of Nesterov’s accelerated gradient method is much better than that of the gradient descent method but still not optimal. We also …


A Conservative Numerical Scheme For The Multilayer Shallow Water Equations, Evan Butterworth May 2022

A Conservative Numerical Scheme For The Multilayer Shallow Water Equations, Evan Butterworth

All Theses

An energy-conserving numerical scheme is developed for the multilayer shallow water equations (SWE’s). The scheme is derived through the Hamiltonian formulation of the inviscid shallow water flows related to the vorticity-divergence variables. Through the employment of the skew-symmetric Poisson bracket, the continuous system for the multilayer SWE’s is shown to preserve an infinite number of quantities, most notably the energy and enstrophy. An energy-preserving numerical scheme is then developed through the careful discretization of the Hamiltonian and the Poisson bracket, ensuring the skew-symmetry of the latter. This serves as the groundwork for developing additional schemes that preserve other conservation properties …