Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

On Variants Of Sliding And Frank-Wolfe Type Methods And Their Applications In Video Co-Localization, Seyed Hamid Nazari Dec 2022

On Variants Of Sliding And Frank-Wolfe Type Methods And Their Applications In Video Co-Localization, Seyed Hamid Nazari

All Dissertations

In this dissertation, our main focus is to design and analyze first-order methods for computing approximate solutions to convex, smooth optimization problems over certain feasible sets. Specifically, our goal in this dissertation is to explore some variants of sliding and Frank-Wolfe (FW) type algorithms, analyze their convergence complexity, and examine their performance in numerical experiments. We achieve three accomplishments in our research results throughout this dissertation. First, we incorporate a linesearch technique to a well-known projection-free sliding algorithm, namely the conditional gradient sliding (CGS) method. Our proposed algorithm, called the conditional gradient sliding with linesearch (CGSls), does not require the …


Improving Efficiency Of Rational Krylov Subspace Methods, Shengjie Xu Dec 2022

Improving Efficiency Of Rational Krylov Subspace Methods, Shengjie Xu

All Dissertations

This thesis studies two classes of numerical linear algebra problems, approximating the product of a function of a matrix with a vector, and solving the linear eigenvalue problem $Av=\lambda Bv$ for a small number of eigenvalues. These problems are solved by rational Krylov subspace methods (RKSM). We present several improvements in two directions: pole selection and applying inexact methods.

In Chapter 3, a flexible extended Krylov subspace method ($\mathcal{F}$-EKSM) is considered for numerical approximation of the action of a matrix function $f(A)$ to a vector $b$, where the function $f$ is of Markov type. $\mathcal{F}$-EKSM has the same framework as …


Optimal First Order Methods For Reducing Gradient Norm In Unconstrained Convex Smooth Optimization, Yunheng Jiang Aug 2022

Optimal First Order Methods For Reducing Gradient Norm In Unconstrained Convex Smooth Optimization, Yunheng Jiang

All Theses

In this thesis, we focus on convergence performance of first-order methods to compute an $\epsilon$-approximate solution of minimizing convex smooth function $f$ at the $N$-th iteration.

In our introduction of the above research question, we first introduce the gradient descent method with constant step size $h=1/L$. The gradient descent method has a $\mathcal{O}(L^2\|x_0-x^*\|^2/\epsilon)$ convergence with respect to $\|\nabla f(x_N)\|^2$. Next we introduce Nesterov’s accelerated gradient method, which has an $\mathcal{O}(L\|x_0-x^*\|\sqrt{1/\epsilon})$ complexity in terms of $\|\nabla f(x_N)\|^2$. The convergence performance of Nesterov’s accelerated gradient method is much better than that of the gradient descent method but still not optimal. We also …


Efficiency Of Homomorphic Encryption Schemes, Kyle Yates Aug 2022

Efficiency Of Homomorphic Encryption Schemes, Kyle Yates

All Theses

In 2009, Craig Gentry introduced the first fully homomorphic encryption scheme using bootstrapping. In the 13 years since, a large amount of research has gone into improving efficiency of homomorphic encryption schemes. This includes implementing leveled homomorphic encryption schemes for practical use, which are schemes that allow for some predetermined amount of additions and multiplications that can be performed on ciphertexts. These leveled schemes have been found to be very efficient in practice. In this thesis, we will discuss the efficiency of various homomorphic encryption schemes. In particular, we will see how to improve sizes of parameter choices in homomorphic …


Advancements In Gaussian Process Learning For Uncertainty Quantification, John C. Nicholson May 2022

Advancements In Gaussian Process Learning For Uncertainty Quantification, John C. Nicholson

All Dissertations

Gaussian processes are among the most useful tools in modeling continuous processes in machine learning and statistics. The research presented provides advancements in uncertainty quantification using Gaussian processes from two distinct perspectives. The first provides a more fundamental means of constructing Gaussian processes which take on arbitrary linear operator constraints in much more general framework than its predecessors, and the other from the perspective of calibration of state-aware parameters in computer models. If the value of a process is known at a finite collection of points, one may use Gaussian processes to construct a surface which interpolates these values to …


Managing Risk For Power System Operations And Planning: Applications Of Conditional Value-At-Risk And Uncertainty Quantification To Optimal Power Flow And Distributed Energy Resources Investment, Thanh To May 2022

Managing Risk For Power System Operations And Planning: Applications Of Conditional Value-At-Risk And Uncertainty Quantification To Optimal Power Flow And Distributed Energy Resources Investment, Thanh To

All Dissertations

Renewable energy sources are indispensable components of sustainable electrical systems that reduce human dependence on fossil fuels. However, due to their intermittent nature, there are issues that need to be addressed to ensure the security and resiliency of these power systems. This dissertation formulates several practical problems, from an optimization perspective, stemming from the increasing penetration of intermittent renewable energy to power systems. A number of Optimal Power Flow (OPF) formulations are investigated and new formulations are proposed to control both operations and planning risks by utilizing the Conditional Value–at–Risk (CVaR) measure. Our formulations provide system operators and investors analysis …


A Conservative Numerical Scheme For The Multilayer Shallow Water Equations, Evan Butterworth May 2022

A Conservative Numerical Scheme For The Multilayer Shallow Water Equations, Evan Butterworth

All Theses

An energy-conserving numerical scheme is developed for the multilayer shallow water equations (SWE’s). The scheme is derived through the Hamiltonian formulation of the inviscid shallow water flows related to the vorticity-divergence variables. Through the employment of the skew-symmetric Poisson bracket, the continuous system for the multilayer SWE’s is shown to preserve an infinite number of quantities, most notably the energy and enstrophy. An energy-preserving numerical scheme is then developed through the careful discretization of the Hamiltonian and the Poisson bracket, ensuring the skew-symmetry of the latter. This serves as the groundwork for developing additional schemes that preserve other conservation properties …