Open Access. Powered by Scholars. Published by Universities.®

Series

SiRNA

Cell Biology

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Medicinal and Pharmaceutical Chemistry

Amphiphilic Cell-Penetrating Peptides Containing Natural And Unnatural Amino Acids As Drug Delivery Agents, David Salehi, Saghar Mozaffari, Khalid Zoghebi, Sandeep Lohan, Dindyal Mandal, Rakesh Tiwari, Keykavous Parang Mar 2022

Amphiphilic Cell-Penetrating Peptides Containing Natural And Unnatural Amino Acids As Drug Delivery Agents, David Salehi, Saghar Mozaffari, Khalid Zoghebi, Sandeep Lohan, Dindyal Mandal, Rakesh Tiwari, Keykavous Parang

Pharmacy Faculty Articles and Research

A series of cyclic peptides, [(DipR)(WR)4], [(DipR)2(WR)3], [(DipR)3(WR)2], [(DipR)4(WR)], and [DipR]5, and their linear counterparts containing arginine (R) as positively charged residues and tryptophan (W) or diphenylalanine (Dip) as hydrophobic residues, were synthesized and evaluated for their molecular transporter efficiency. The in vitro cytotoxicity of the synthesized peptides was determined in human epithelial ovary adenocarcinoma cells (SK-OV-3), human lymphoblast peripheral blood cells (CCRF-CEM), human embryonic epithelial kidney healthy cells (HEK-293), human epithelial mammary gland adenocarcinoma cells (MDA-MB-468), pig epithelial kidney normal cells (LLC-PK1), and human epithelial …


Click-Free Synthesis Of A Multivalent Tricyclic Peptide As A Molecular Transporter, Sumit Kumar, Dindyal Mandal, Shaima Ahmed El-Mowafi, Saghar Mozaffari, Rakesh Kumar Tiwari, Keykavous Parang Sep 2020

Click-Free Synthesis Of A Multivalent Tricyclic Peptide As A Molecular Transporter, Sumit Kumar, Dindyal Mandal, Shaima Ahmed El-Mowafi, Saghar Mozaffari, Rakesh Kumar Tiwari, Keykavous Parang

Pharmacy Faculty Articles and Research

The cellular delivery of cell-impermeable and water-insoluble molecules remains an ongoing challenge to overcome. Previously, we reported amphipathic cyclic peptides c[WR]4 and c[WR]5 consisting of alternate arginine and tryptophan residues as nuclear-targeting molecular transporters. These peptides contain an optimal balance of positive charge and hydrophobicity, which is required for interactions with the phospholipid bilayer to facilitate their application as a drug delivery system. To further optimize them, we synthesized and evaluated a multivalent tricyclic peptide as an efficient molecular transporter. The monomeric cyclic peptide building blocks were synthesized using Fmoc/tBu solid-phase chemistry and cyclization in the …


Amphiphilic Peptides For Efficient Sirna Delivery, Saghar Mozaffari, Emira Bousoik, Farideh Amirrad, Robert Lamboy, Melissa Coyle, Ryley Hall, Abdulaziz Alasmari, Parvin Mahdipoor, Keykavous Parang, Hamidreza Montazeri Aliabadi Apr 2019

Amphiphilic Peptides For Efficient Sirna Delivery, Saghar Mozaffari, Emira Bousoik, Farideh Amirrad, Robert Lamboy, Melissa Coyle, Ryley Hall, Abdulaziz Alasmari, Parvin Mahdipoor, Keykavous Parang, Hamidreza Montazeri Aliabadi

Pharmacy Faculty Articles and Research

A number of amphiphilic cyclic peptides—[FR]4, [WR]5, and [WK]5—containing hydrophobic and positively-charged amino acids were synthesized by Fmoc/tBu solid-phase peptide methods and evaluated for their efficiency in intracellular delivery of siRNA to triple-negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, in the presence and absence of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Among the peptides, [WR]5, which contains alternate tryptophan (W) and arginine (R) residues, was found to be the most efficient in the delivery of siRNA by improving the delivery by more than 3-fold when compared to other synthesized cyclic peptides that were not efficient. The data also showed that co-formulation of [WR]5 …