Open Access. Powered by Scholars. Published by Universities.®

Series

Chemistry

Institution
Keyword
Publication Year
Publication

Articles 1 - 25 of 25

Full-Text Articles in Medicinal and Pharmaceutical Chemistry

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian Jan 2024

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The discovery of novel therapeutic compounds through de novo drug design represents a critical challenge in the field of pharmaceutical research. Traditional drug discovery approaches are often resource intensive and time consuming, leading researchers to explore innovative methods that harness the power of deep learning and reinforcement learning techniques. Here, we introduce a novel drug design approach called drugAI that leverages the Encoder–Decoder Transformer architecture in tandem with Reinforcement Learning via a Monte Carlo Tree Search (RL-MCTS) to expedite the process of drug discovery while ensuring the production of valid small molecules with drug-like characteristics and strong binding affinities towards …


Structure-Guided Mutagenesis Reveals The Catalytic Residue That Controls The Regiospecificity Of C6-Indole Prenyltransferases, Ahmed R. Aoun, Nagaraju Mupparapu, Diem N. Nguyen, Tae Ho Kim, Christopher M. Nguyen, Zhengfeiyue Pan, Sherif I. Elshahawi May 2023

Structure-Guided Mutagenesis Reveals The Catalytic Residue That Controls The Regiospecificity Of C6-Indole Prenyltransferases, Ahmed R. Aoun, Nagaraju Mupparapu, Diem N. Nguyen, Tae Ho Kim, Christopher M. Nguyen, Zhengfeiyue Pan, Sherif I. Elshahawi

Pharmacy Faculty Articles and Research

Indole is a significant structural moiety and functionalization of the C−H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl moieties on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization. However, the mechanism by which certain IPTs target a specific carbon position is not fully understood. Herein, we use structure-guided site-directed mutagenesis, in vitro enzymatic reactions, kinetics and structural-elucidation of analogs to verify the key catalytic residues that control the regiospecificity of all characterized regiospecific …


Virtual And In Vitro Screening Of Natural Products Identifies Indole And Benzene Derivatives As Inhibitors Of Sars-Cov-2 Main Protease (MPro), Dony Ang, Riley Kendall, Hagop S. Atamian Mar 2023

Virtual And In Vitro Screening Of Natural Products Identifies Indole And Benzene Derivatives As Inhibitors Of Sars-Cov-2 Main Protease (MPro), Dony Ang, Riley Kendall, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The rapid spread of the coronavirus disease 2019 (COVID-19) resulted in serious health, social, and economic consequences. While the development of effective vaccines substantially reduced the severity of symptoms and the associated deaths, we still urgently need effective drugs to further reduce the number of casualties associated with SARS-CoV-2 infections. Machine learning methods both improved and sped up all the different stages of the drug discovery processes by performing complex analyses with enormous datasets. Natural products (NPs) have been used for treating diseases and infections for thousands of years and represent a valuable resource for drug discovery when combined with …


Stereocontrolled Access To Δ-Lactone-Fused-Γ-Lactams Bearing Angular Benzylic Quaternary Stereocenters, Timothy K. Beng, Morgan J. Rodriguez, Claire Borg Jun 2022

Stereocontrolled Access To Δ-Lactone-Fused-Γ-Lactams Bearing Angular Benzylic Quaternary Stereocenters, Timothy K. Beng, Morgan J. Rodriguez, Claire Borg

All Faculty Scholarship for the College of the Sciences

C-fused γ-lactam-lactones are resident in several bioactive molecules, including anticancer agents such as omuralide. In this embodiment, we report mild conditions for the catalytic halolactonization of lactam-tethered 5-aryl-4(E)-pentenoic acids. The use of dichloromethane as the solvent and Ph3PS as the catalyst led to predominant 6-endo-trig cyclization and furnished the trans-fused-γ-lactam-δ-lactones. The transformation is modular, regioselective, chemoselective, and diastereoselective. The γ-lactam-δ-lactones bear angular quaternary benzylic stereocenters, which is noteworthy since the presence of a quaternary carbon in bioactive small molecules often promotes an element of conformational restriction that imparts potency, selectivity, and metabolic stability. The …


Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen Apr 2022

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSB/SJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has killed an …


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen Apr 2022

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSB/SJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be the protein of …


Natural Phaeosphaeride A Derivatives Overcome Drug Resistance Of Tumor Cells And Modulate Signaling Pathways, Victoria Abzianidze, Natalia Moiseeva, Diana Suponina, Sofya Zakharenkova, Nadezhda Rogovskaya, Lidia Laletina, Alvin A. Holder, Denis Krivorotov, Alexander Bogachenkov, Alexander Garabadzhiu, Anton Ukolov, Vyacheslav Kosorukov Mar 2022

Natural Phaeosphaeride A Derivatives Overcome Drug Resistance Of Tumor Cells And Modulate Signaling Pathways, Victoria Abzianidze, Natalia Moiseeva, Diana Suponina, Sofya Zakharenkova, Nadezhda Rogovskaya, Lidia Laletina, Alvin A. Holder, Denis Krivorotov, Alexander Bogachenkov, Alexander Garabadzhiu, Anton Ukolov, Vyacheslav Kosorukov

Chemistry & Biochemistry Faculty Publications

n the present study, natural phaeosphaeride A (PPA) derivatives are synthesized. Anti-tumor studies are carried out on the PC3, K562, HCT-116, THP-1, MCF-7, A549, NCI-H929, Jurkat, and RPMI8226 tumor cell lines, and on the human embryonic kidney (HEK293) cell line. All the compounds synthesized turned out to have better efficacy than PPA towards the tumor cell lines listed. Among them, three compounds exhibited an ability to overcome the drug resistance of tumor cells associated with the overexpression of the P-glycoprotein by modulating the work of this transporter. Luminex xMAP technology was used to assess the effect of five synthesized compounds …


Bisindolylmaleimide Ix: A Novel Anti-Sars-Cov2 Agent Targeting Viral Main Protease 3clpro Demonstrated By Virtual Screening Pipeline And In-Vitro Validation Assays, Yash Gupta, Dawid Maciorowski, Samantha E. Zak, Krysten A. Jones, Rahul S. Kathayat, Saara-Anne Azizi, Raman Mathur, Catherine M. Pearce, David J. Ilc, Hamza Husein, Andrew S. Herbert, Ajay Bharti, Brijesh Rathi, Ravi Durvasula, Daniel P. Becker, Bryan C. Dickinson, John M. Dye, Prakasha Kempaiah Nov 2021

Bisindolylmaleimide Ix: A Novel Anti-Sars-Cov2 Agent Targeting Viral Main Protease 3clpro Demonstrated By Virtual Screening Pipeline And In-Vitro Validation Assays, Yash Gupta, Dawid Maciorowski, Samantha E. Zak, Krysten A. Jones, Rahul S. Kathayat, Saara-Anne Azizi, Raman Mathur, Catherine M. Pearce, David J. Ilc, Hamza Husein, Andrew S. Herbert, Ajay Bharti, Brijesh Rathi, Ravi Durvasula, Daniel P. Becker, Bryan C. Dickinson, John M. Dye, Prakasha Kempaiah

Chemistry: Faculty Publications and Other Works

SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2′-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = …


Cyclic Peptide-Gadolinium Nanocomplexes As Sirna Delivery Tools, Amir Nasrolahi Shirazi, Muhammad Imran Sajid, Dindyal Mandal, David Stickley, Stephanie Nagasawa, Joshua Long, Sandeep Lohan, Keykavous Parang, Rakesh Kumar Tiwari Oct 2021

Cyclic Peptide-Gadolinium Nanocomplexes As Sirna Delivery Tools, Amir Nasrolahi Shirazi, Muhammad Imran Sajid, Dindyal Mandal, David Stickley, Stephanie Nagasawa, Joshua Long, Sandeep Lohan, Keykavous Parang, Rakesh Kumar Tiwari

Pharmacy Faculty Articles and Research

We have recently reported that a cyclic peptide containing five tryptophan, five arginine, and one cysteine amino acids [(WR)5C], was able to produce peptide-capped gadolinium nanoparticles, [(WR)5C]-GdNPs, in the range of 240 to 260 nm upon mixing with an aqueous solution of GdCl3. Herein, we report [(WR)5C]-GdNPs as an efficient siRNA delivery system. The peptide-based gadolinium nanoparticles (50 µM) did not exhibit significant cytotoxicity (~93% cell viability at 50 µM) in human leukemia T lymphoblast cells (CCRF-CEM) and triple-negative breast cancer cells (MDA-MB-231) after 48 h. Fluorescence-activated cell sorting (FACS) analysis indicated …


Label‑Free Spectral Imaging To Study Drug Distribution And Metabolism In Single Living Cells, Qamar Alshammari, Rajasekharreddy Pala, Nir Katzir, Surya M. Nauli Feb 2021

Label‑Free Spectral Imaging To Study Drug Distribution And Metabolism In Single Living Cells, Qamar Alshammari, Rajasekharreddy Pala, Nir Katzir, Surya M. Nauli

Pharmacy Faculty Articles and Research

During drug development, evaluation of drug and its metabolite is an essential process to understand drug activity, stability, toxicity and distribution. Liquid chromatography (LC) coupled with mass spectrometry (MS) has become the standard analytical tool for screening and identifying drug metabolites. Unlike LC/MS approach requiring liquifying the biological samples, we showed that spectral imaging (or spectral microscopy) could provide high-resolution images of doxorubicin (dox) and its metabolite doxorubicinol (dox’ol) in single living cells. Using this new method, we performed measurements without destroying the biological samples. We calculated the rate constant of dox translocating from extracellular moiety into the cell and …


The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba Jan 2021

The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

β-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS–purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine …


Differential Modulation Of Sk Channel Subtypes By Phosphorylation, Young-Woo Nam, Dezhi Kong, Dong Wang, Razan Orfali, Rinzhin T. Sherpa, Jennifer Totonchy, Surya M. Nauli, Miao Zhang Jan 2021

Differential Modulation Of Sk Channel Subtypes By Phosphorylation, Young-Woo Nam, Dezhi Kong, Dong Wang, Razan Orfali, Rinzhin T. Sherpa, Jennifer Totonchy, Surya M. Nauli, Miao Zhang

Pharmacy Faculty Articles and Research

Small-conductance Ca2+-activated K+ (SK) channels are voltage-independent and are activated by Ca2+ binding to the calmodulin constitutively associated with the channels. Both the pore-forming subunits and the associated calmodulin are subject to phosphorylation. Here, we investigated the modulation of different SK channel subtypes by phosphorylation, using the cultured endothelial cells as a tool. We report that casein kinase 2 (CK2) negatively modulates the apparent Ca2+ sensitivity of SK1 and IK channel subtypes by more than 5-fold, whereas the apparent Ca2+ sensitivity of the SK3 and SK2 subtypes is only reduced by ∼2-fold, when heterologously …


Traceable Peo-Poly(Ester) Micelles For Breast Cancer Targeting: The Effect Of Core Structure And Targeting Peptide On Micellar Tumor Accumulation, Shyam M. Garg, Igor M. Paiva, Mohammad R. Vakili, Rania Soudy, Kate Agopsowicz, Amir H. Soleimani, Mary Hitt, Kamaljit Kaur, Afsaneh Lavasanifar Aug 2017

Traceable Peo-Poly(Ester) Micelles For Breast Cancer Targeting: The Effect Of Core Structure And Targeting Peptide On Micellar Tumor Accumulation, Shyam M. Garg, Igor M. Paiva, Mohammad R. Vakili, Rania Soudy, Kate Agopsowicz, Amir H. Soleimani, Mary Hitt, Kamaljit Kaur, Afsaneh Lavasanifar

Pharmacy Faculty Articles and Research

Traceable poly(ethylene oxide)-poly(ester) micelles were developed through chemical conjugation of a near-infrared (NIR) dye to the poly(ester) end by click chemistry. This strategy was tried for micelles with poly(ε-caprolactone) (PCL) or poly(α-benzyl carboxylate-ε-caprolactone) (PBCL) cores. The surface of both micelles was also modified with the breast cancer targeting peptide, P18-4. The results showed the positive contribution of PBCL over PCL core on micellar thermodynamic and kinetic stability as well as accumulation in primary orthotopic MDA-MB-231 tumors within 4–96 h following intravenous administration in mice. This was in contrast to in vitro studies where better uptake of PEO-PCL versus PEO-PBCL micelles …


Simplified Reversed Chloroquines To Overcome Malaria Resistance To Quinoline-Based Drugs, Bornface Gunsaru, Steven J. Burgess, Westin Morrill, Jane X. Kelly, Shawheen Shomloo, Martin J. Smilkstein, Katherine May Liebman, David H. Peyton May 2017

Simplified Reversed Chloroquines To Overcome Malaria Resistance To Quinoline-Based Drugs, Bornface Gunsaru, Steven J. Burgess, Westin Morrill, Jane X. Kelly, Shawheen Shomloo, Martin J. Smilkstein, Katherine May Liebman, David H. Peyton

Chemistry Faculty Publications and Presentations

Building on our earlier work of attaching a chemosensitizer (reversal agent) to a known drug pharmacophore, we have now expanded the structure-activity relationship study to include simplified versions of the chemosensitizer. The change from two aromatic rings in this head group to a single ring does not appear to detrimentally affect the antimalarial activity of the compounds. Data from in vitro heme binding and beta-hematin inhibition assays suggest that the single aromatic RCQ compounds retain activities against Plasmodium falciparum similar to those of CQ, although other mechanisms of action may be relevant to their activities.


Naloxone Therapy In Opioid Overdose Patients: Intranasal Or Intravenous?, Leiah Carney Jan 2017

Naloxone Therapy In Opioid Overdose Patients: Intranasal Or Intravenous?, Leiah Carney

Natural Sciences Student Research Presentations

This slide presentation for the Natural Science Poster Session at Parkland College describes the chemical makeup and effect of Naloxone, an opioid antagonist used in the treatment opioid overdose and summarizes a study comparing intravenous and intranasal delivery methods. Concludes that although there are conflicting studies, evidence supports intranasal delivery.


Countercurrent Chromatography Fractions Of Plant Extracts With Anti-Tuberculosis Activity, Douglas Armstrong, Nathan C. Krause, Drew Frey, J. Brent Friesen, Baojie Wan, Jordan Gunn, Scott Franzblau Aug 2016

Countercurrent Chromatography Fractions Of Plant Extracts With Anti-Tuberculosis Activity, Douglas Armstrong, Nathan C. Krause, Drew Frey, J. Brent Friesen, Baojie Wan, Jordan Gunn, Scott Franzblau

Faculty Scholarship – Chemistry

Samples of numerous plant species were received from the southwestern part of the USA, from Richard Spjut, and plant samples were collected here in Illinois. All were extracted with typical solvents, giving crude residues, some of which were subjected to chromatographic methods. Some of the crude residues and some of the fractions were tested for anti-tuberculosis activity and/or antibacterial activity.

In a general way, bioactive natural products are dealt with very well by Liang & Fang. More specifically, the southwestern part of the United States has a large variety of indigenous plants many of which have not been investigated for …


Bupropion Hydrochloride, Cylie A. Couch Jan 2016

Bupropion Hydrochloride, Cylie A. Couch

Natural Sciences Student Research Presentations

This is a poster presented at the Natural Sciences Poster Session at Parkland College, which provides the chemical makeup, dosage, and the body's response to r bupropion hydrochloride (Wellbutrin, Zyban), a medication used to treat depression, smoking cessation, and seasonal affective disorder.


The Potential Of Quinoline Derivatives For The Treatment Of Toxoplasma Gondii Infection., Sirinart Ananvoranich Oct 2014

The Potential Of Quinoline Derivatives For The Treatment Of Toxoplasma Gondii Infection., Sirinart Ananvoranich

Chemistry and Biochemistry Publications

Here we reported our investigation, as part of our drug repositioning effort, on anti-Toxoplasma properties of newly synthesized quinoline compounds. A collection of 4-aminoquinoline and 4-piperazinylquinoline analogs have recently been synthesized for use in cancer chemotherapy. Some analogs were able to outperform chloroquine, a quinoline derivative drug which is commonly used in the treatment of malaria and other parasitic infections. Herein 58 compounds containing one or two quinoline rings were examined for their effectiveness as potential anti-Toxoplasma compounds. Of these 58 compounds, 32 were efficient at inhibiting Toxoplasma growth (IC50μM). Five compounds with single and simple quinoline rings exhibited similar …


Inhibition Of The Thioesterase Activity Of Human Fatty Acid Synthase By 1,4- And 9,10-Diones, Herman H. Odens Sep 2014

Inhibition Of The Thioesterase Activity Of Human Fatty Acid Synthase By 1,4- And 9,10-Diones, Herman H. Odens

Faculty Works

Fatty acid synthase (FASN) is the enzyme that synthesizes fatty acids de novo in human cells. Although FASN is generally expressed at low levels in most normal tissues, its expression is highly upregulated in many cancers. Consistent with this notion, inhibition of FASN activity has demonstrated potential to halt proliferation and induce cell death in vitro and to block tumor growth in vivo. Consequently, FASN is widely recognized as a valuable therapeutic target. In this report, we describe a variety of 1,4-quinones and 9,10- anthraquinones, including several natural compounds and some newly synthesized compounds, that potently inhibit the thioesterase (TE) …


Single Step Synthesis Of Antibiotic Kanamycin Embedded Gold Nanoparticles For Efficient Antibacterial Activity, Shravan Gavva Aug 2013

Single Step Synthesis Of Antibiotic Kanamycin Embedded Gold Nanoparticles For Efficient Antibacterial Activity, Shravan Gavva

Masters Theses & Specialist Projects

Nanotechnology has become the most advanced type of drug delivery system within the last decade. This advancement shifted the focus on small carriers to increase the efficiency of the drugs. Among these, gold nanoparticles (GNPs) were found to have profound biomedical applications. In current research, kanamycin embedded GNPs were prepared in a single step, single phase, and bio-friendly (green synthesis) procedure. The synthesized Kanamycin-GNPs (Kan-GNPs) were spherical in shape and had a size range of 15 ± 3 nm. The chosen kanamycin is an aminoglycosidic antibiotic that is isolated from Streptomyces kanamyceticus. These special antibiotic GNPs are further characterized using …


Effect Of Leaving Ligands Of Platinum(Ii) Diamine Complexes On Dna And Protein Residues, Ramya Kolli May 2013

Effect Of Leaving Ligands Of Platinum(Ii) Diamine Complexes On Dna And Protein Residues, Ramya Kolli

Masters Theses & Specialist Projects

Platinum compounds are widely used drugs in cancer treatments. Although DNA is the biological target, reaction of platinum compounds with proteins is also potentially significant. Our objective is to study the effects of leaving ligands on the relative reactivity between 5'-GMP (guanosine 5' phosphate), a key DNA target, and N-Acetyl - L-Methionine (N-AcMet), a key protein target. We have used NMR spectroscopy to monitor reactions with N-AcMet and 5'-GMP added to a platinum complex to see which products are formed preferentially. Previous research showed that both a non-bulky complex such as [Pt(en)(D2O)2]2+ [en=ethylenediamine], and a …


Testosterone Use And Effects, Brandon Mills Jan 2013

Testosterone Use And Effects, Brandon Mills

Natural Sciences Student Research Presentations

Summarizes the chemical make-up, medical applications and side effects for the steroidal hormone Testosterone. This is a project for the Natural Sciences Poster Session at Parkland College.


Structural Properties Of Thermoresponsive Poly(N-Isopropylacrylamide)-Poly(Ethyleneglycol) Microgels, J. Clara-Rahola, A. Fernandez-Nieves, B. Sierra-Martin, A. B. South, L. Andrew Lyon, J. Kohlbrecher, A. F. Barbero Jan 2012

Structural Properties Of Thermoresponsive Poly(N-Isopropylacrylamide)-Poly(Ethyleneglycol) Microgels, J. Clara-Rahola, A. Fernandez-Nieves, B. Sierra-Martin, A. B. South, L. Andrew Lyon, J. Kohlbrecher, A. F. Barbero

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The application of RNA interference to treat disease is an important yet challenging concept in modern medicine. In particular, small interfering RNA (siRNA) have shown tremendous promise in the treatment of cancer. However, siRNA show poor pharmacological properties, which presents a major hurdle for effective disease treatment especially through intravenous delivery routes. In response to these shortcomings, a variety of nanoparticle carriers have emerged, which are designed to encapsulate, protect, and transport siRNA into diseased cells. To be effective as carrier vehicles, nanoparticles must overcome a series of biological hurdles throughout the course of delivery. As a result, one promising …


Innovative Purification Protocol For Heparin Binding Proteins: Relevance In Biopharmaceutical And Biomedical Applications, Sumit Batra May 2011

Innovative Purification Protocol For Heparin Binding Proteins: Relevance In Biopharmaceutical And Biomedical Applications, Sumit Batra

Masters Theses & Specialist Projects

Heparin binding (HB) proteins mediates a wide range of important cellular processes, which makes this class of proteins biopharmaceutically important. Engineering HB proteins could bring many advantages, but it necessitates cost effective and efficient purification methodologies compared to the currently available methods. One of the most important classes of heparin binding protein is the fibroblast growth factors (FGFs) and its receptors (FGFRs). In this study, we report an efficient off-column purification of FGF-1 from soluble fractions and purification of the D2 domain of FGFR from insoluble inclusion bodies, using a weak amberlite cation (IRC) exchanger. This approach is an alternative …


Protein Adducts Of Iso[4]Levuglandin E2, A Product Of The Isoprostane Pathway, In Oxidized Low Density Lipoprotein, Robert G. Salomon, Wei Sha, Cynthia Brame, Kamaljit Kaur, Ganesamoorthy Subbanagounder, June O'Neil, Henry F. Hoff, L. Jackson Roberts Ii Jul 1999

Protein Adducts Of Iso[4]Levuglandin E2, A Product Of The Isoprostane Pathway, In Oxidized Low Density Lipoprotein, Robert G. Salomon, Wei Sha, Cynthia Brame, Kamaljit Kaur, Ganesamoorthy Subbanagounder, June O'Neil, Henry F. Hoff, L. Jackson Roberts Ii

Pharmacy Faculty Articles and Research

Levuglandin (LG) E2, a cytotoxic seco prostanoic acid co-generated with prostaglandins by nonenzymatic rearrangements of the cyclooxygenase-derived endoperoxide, prostaglandin H2, avidly binds to proteins. That LGE2-protein adducts can also be generated nonenzymatically is demonstrated by their production during free radical-induced oxidation of low density lipoprotein (LDL). Like oxidized LDL, LGE2-LDL, but not native LDL, undergoes receptor-mediated uptake and impaired processing by macrophage cells. Since radical-induced lipid oxidation produces isomers of prostaglandins, isoprostanes (isoPs), via endoperoxide intermediates, we postulated previously that a similar family of LG isomers, isoLGs, is cogenerated with isoPs. Now …