Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 76

Full-Text Articles in Medicinal and Pharmaceutical Chemistry

Mathematical Modeling And Examination Into Existing And Emerging Parkinson’S Disease Treatments: Levodopa And Ketamine, Gabrielle Riddlemoser May 2024

Mathematical Modeling And Examination Into Existing And Emerging Parkinson’S Disease Treatments: Levodopa And Ketamine, Gabrielle Riddlemoser

Undergraduate Honors Theses

Parkinson’s disease (PD) is the second most common neurodegenerative disease across the world, affecting over 6 million people worldwide. This disorder is characterized by the progressive loss of dopaminergic neurons within the substantia nigra pars compacta (SNpc) due to the aggregation of α-synuclein within the brain. Patients with PD develop motor symptoms such as tremors, bradykinesia, and postural instability, as well as a host of non-motor symptoms such as behavioral changes, sleep difficulties, and fatigue. The reduction of dopamine within the brain is the primary cause of these symptoms. The main form of treatment for PD is levodopa, a precursor …


Synthesis Of Thermoresponsive Poly(N-Isopropyl Acrylamide) Based Core-Shell And Hollow Shell Nanogel With Tunable Core And Shell Thickness, Mohamad Hijazi, Molla R. Islam May 2024

Synthesis Of Thermoresponsive Poly(N-Isopropyl Acrylamide) Based Core-Shell And Hollow Shell Nanogel With Tunable Core And Shell Thickness, Mohamad Hijazi, Molla R. Islam

Student Scholar Symposium Abstracts and Posters

Nanogels have emerged as a notably safer and more effective means for drug delivery, primarily due to their adjustable drug-loading capabilities. Hollow-core nanoparticles offer some unique properties that are desirable for drug delivery applications. Initially, silica core nanoparticles were synthesized using the Stöber process at different temperatures where Tetraethoxysilane (TEOS) undergoes hydrolysis in the presence of ethanol and then a condensation reaction to form silica nanoparticles. Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) analysis revealed that the size of silica core particles varied with the synthesis temperature (300 nm at 30°C to 150 at 60°C). The core silica particles …


Predicting Ffar4 Agonists Using Structure-Based Machine Learning Approach Based On Molecular Fingerprints, Zaid Anis Sherwani, Syeda Sumayya Tariq, Mamona Mushtaq, Ali Raza Siddiqui, Mohammad Nur-E-Alam, Aftab Ahmed, Zaheer Ul-Haq Apr 2024

Predicting Ffar4 Agonists Using Structure-Based Machine Learning Approach Based On Molecular Fingerprints, Zaid Anis Sherwani, Syeda Sumayya Tariq, Mamona Mushtaq, Ali Raza Siddiqui, Mohammad Nur-E-Alam, Aftab Ahmed, Zaheer Ul-Haq

Pharmacy Faculty Articles and Research

Free Fatty Acid Receptor 4 (FFAR4), a G-protein-coupled receptor, is responsible for triggering intracellular signaling pathways that regulate various physiological processes. FFAR4 agonists are associated with enhancing insulin release and mitigating the atherogenic, obesogenic, pro-carcinogenic, and pro-diabetogenic effects, normally associated with the free fatty acids bound to FFAR4. In this research, molecular structure-based machine-learning techniques were employed to evaluate compounds as potential agonists for FFAR4. Molecular structures were encoded into bit arrays, serving as molecular fingerprints, which were subsequently analyzed using the Bayesian network algorithm to identify patterns for screening the data. The shortlisted hits obtained via machine learning protocols …


Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian Jan 2024

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The discovery of novel therapeutic compounds through de novo drug design represents a critical challenge in the field of pharmaceutical research. Traditional drug discovery approaches are often resource intensive and time consuming, leading researchers to explore innovative methods that harness the power of deep learning and reinforcement learning techniques. Here, we introduce a novel drug design approach called drugAI that leverages the Encoder–Decoder Transformer architecture in tandem with Reinforcement Learning via a Monte Carlo Tree Search (RL-MCTS) to expedite the process of drug discovery while ensuring the production of valid small molecules with drug-like characteristics and strong binding affinities towards …


Development And Validation Of A Uplc-Ms/Ms Method To Investigate The Plasma Pharmacokinetics Of A KCa2.2/KCa2.3 Positive Allosteric Modulator In Mice, Mohammad Asikur Rahman, Devaraj Venkatapura Chandrashekar, Young-Woo Nam, Basir Syed, David Salehi, Hamidreza Montazeri Aliabadi, Miao Zhang, Reza Mehvar May 2023

Development And Validation Of A Uplc-Ms/Ms Method To Investigate The Plasma Pharmacokinetics Of A KCa2.2/KCa2.3 Positive Allosteric Modulator In Mice, Mohammad Asikur Rahman, Devaraj Venkatapura Chandrashekar, Young-Woo Nam, Basir Syed, David Salehi, Hamidreza Montazeri Aliabadi, Miao Zhang, Reza Mehvar

Pharmacy Faculty Articles and Research

Rationale

There is currently no treatment for spinocerebellar ataxias (SCAs), which are a group of genetic disorders that often cause a lack of coordination, difficulty walking, slurred speech, tremors, and eventually death. Activation of KCa2.2/KCa2.3 channels reportedly exerts beneficial effects in SCAs. Here, we report the development and validation of an analytical method for quantitating a recently-developed positive allosteric modulator of KCa2.2/KCa2.3 channels (compound 2q) in mouse plasma.

Methods

Mouse plasma samples (10 μL) containing various concentrations of 2q were subjected to protein precipitation in the presence of a structurally similar internal …


Structure-Guided Mutagenesis Reveals The Catalytic Residue That Controls The Regiospecificity Of C6-Indole Prenyltransferases, Ahmed R. Aoun, Nagaraju Mupparapu, Diem N. Nguyen, Tae Ho Kim, Christopher M. Nguyen, Zhengfeiyue Pan, Sherif I. Elshahawi May 2023

Structure-Guided Mutagenesis Reveals The Catalytic Residue That Controls The Regiospecificity Of C6-Indole Prenyltransferases, Ahmed R. Aoun, Nagaraju Mupparapu, Diem N. Nguyen, Tae Ho Kim, Christopher M. Nguyen, Zhengfeiyue Pan, Sherif I. Elshahawi

Pharmacy Faculty Articles and Research

Indole is a significant structural moiety and functionalization of the C−H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl moieties on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization. However, the mechanism by which certain IPTs target a specific carbon position is not fully understood. Herein, we use structure-guided site-directed mutagenesis, in vitro enzymatic reactions, kinetics and structural-elucidation of analogs to verify the key catalytic residues that control the regiospecificity of all characterized regiospecific …


Virtual And In Vitro Screening Of Natural Products Identifies Indole And Benzene Derivatives As Inhibitors Of Sars-Cov-2 Main Protease (MPro), Dony Ang, Riley Kendall, Hagop S. Atamian Mar 2023

Virtual And In Vitro Screening Of Natural Products Identifies Indole And Benzene Derivatives As Inhibitors Of Sars-Cov-2 Main Protease (MPro), Dony Ang, Riley Kendall, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The rapid spread of the coronavirus disease 2019 (COVID-19) resulted in serious health, social, and economic consequences. While the development of effective vaccines substantially reduced the severity of symptoms and the associated deaths, we still urgently need effective drugs to further reduce the number of casualties associated with SARS-CoV-2 infections. Machine learning methods both improved and sped up all the different stages of the drug discovery processes by performing complex analyses with enormous datasets. Natural products (NPs) have been used for treating diseases and infections for thousands of years and represent a valuable resource for drug discovery when combined with …


Cultivating Health, Not Wealth In The United States' Healthcare System: Comprehensive Revisions For The Orphan Drug Act Of 1983, Kayla Smith Jan 2023

Cultivating Health, Not Wealth In The United States' Healthcare System: Comprehensive Revisions For The Orphan Drug Act Of 1983, Kayla Smith

Regis University Student Publications (comprehensive collection)

This thesis explores the way in which the Orphan Drug Act of 1983, originally instituted in response to a lack of treatments for rare diseases in the United States of America, has failed to achieve its initial objectives in the 40 years since its implementation. In evaluating various successful examples of government subsidization programs designed to intervene in private industry, this thesis composes the criterion required for funding-based legislation which maximize market outcomes while minimizing tax-payer burden. An analysis of the synthetic organic chemistry industry – and a case study into the production of a particular orphan treatment for a …


Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore Dec 2022

Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore

Symposium of Student Scholars

Fragment-based drug discovery (FBDD) is a powerful tool for developing anticancer and antimicrobial agents. Within this, magnetic resonance spectroscopy (NMR) provides a comprehensive qualitative and quantitative approach to screening and validating weak and robust binders with targeted proteins, making NMR among the most attractive strategies in FBDD. Inhibitor of vertebrate lysozyme (Ivyp1) of P. aeruginosa serves as an excellent target because of its active cellular location and implications in clinical prognosis for cystic fibrosis and immunocompromised patients. This study uses current NMR and biophysical techniques to develop a covalent, fragment-linked warhead inhibitor for Ivyp1 through synthetic methods, warhead linking, and …


Jatropha Tanjorensis A Flora Of Southeast Nigeria: Isolation And Characterization Of Naringenin And Validation Of Bio-Enhanced Synergistical Activity Of Α- Tocopherol Toward Clinical Isolates Of Resistant Bacterial, Ikechukwu Kingsley Ijoma, Vincent Ishmael Egbulefu Ajiwe Jun 2022

Jatropha Tanjorensis A Flora Of Southeast Nigeria: Isolation And Characterization Of Naringenin And Validation Of Bio-Enhanced Synergistical Activity Of Α- Tocopherol Toward Clinical Isolates Of Resistant Bacterial, Ikechukwu Kingsley Ijoma, Vincent Ishmael Egbulefu Ajiwe

Makara Journal of Science

Jatropha tanjorensis is among the rich floras of Southeast Nigeria and used by ethnic people to treat infections and manage health conditions. Ethnomedicine has long been employed in the treatment of ailments caused by bacterial pathogens. Studies showed that the incorporation of synthetic α-tocopherol to an antibacterial agent improves its activity. However, knowledge about the antibacterial-enhanced activity of plant-based α-tocopherols, especially those isolated from Jatropha tanjorensis, is limited because of the different bioactivities of synthetic and natural α-tocopherols. To determine the phytochemicals in J. tanjorensis, we carried out the structural elucidation of its leaf extracts. Naringenin and α-tocopherol …


Stereocontrolled Access To Δ-Lactone-Fused-Γ-Lactams Bearing Angular Benzylic Quaternary Stereocenters, Timothy K. Beng, Morgan J. Rodriguez, Claire Borg Jun 2022

Stereocontrolled Access To Δ-Lactone-Fused-Γ-Lactams Bearing Angular Benzylic Quaternary Stereocenters, Timothy K. Beng, Morgan J. Rodriguez, Claire Borg

All Faculty Scholarship for the College of the Sciences

C-fused γ-lactam-lactones are resident in several bioactive molecules, including anticancer agents such as omuralide. In this embodiment, we report mild conditions for the catalytic halolactonization of lactam-tethered 5-aryl-4(E)-pentenoic acids. The use of dichloromethane as the solvent and Ph3PS as the catalyst led to predominant 6-endo-trig cyclization and furnished the trans-fused-γ-lactam-δ-lactones. The transformation is modular, regioselective, chemoselective, and diastereoselective. The γ-lactam-δ-lactones bear angular quaternary benzylic stereocenters, which is noteworthy since the presence of a quaternary carbon in bioactive small molecules often promotes an element of conformational restriction that imparts potency, selectivity, and metabolic stability. The …


The Effects Of Paclitaxel On Cellular Migration And The Cytoskeleton, Ashley Salguero-Gonzalez Apr 2022

The Effects Of Paclitaxel On Cellular Migration And The Cytoskeleton, Ashley Salguero-Gonzalez

Thinking Matters Symposium

In a clinical setting, some patients are exposed to an anti-cancer chemotherapy agent, paclitaxel. Cancerous cells undergo rapid, continuous cell division without control. Chemotherapy treatments try to slow and stop the uncontrollable cell division cycles and eliminate cancerous cells in the process. Paclitaxel serves as a treatment for some types of cancers, including lung, melanoma, bladder, and esophageal. Because it targets the cytoskeleton, paclitaxel can also influence cell migration. This project utilizes a cellular migration assay and an immunohistochemistry assay to analyze the effects of paclitaxel on the movement of cells and on the cytoskeleton of neuroglia rat cells with …


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen Apr 2022

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSB and SJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be the protein of …


Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen Apr 2022

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSB and SJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has killed an …


Natural Phaeosphaeride A Derivatives Overcome Drug Resistance Of Tumor Cells And Modulate Signaling Pathways, Victoria Abzianidze, Natalia Moiseeva, Diana Suponina, Sofya Zakharenkova, Nadezhda Rogovskaya, Lidia Laletina, Alvin A. Holder, Denis Krivorotov, Alexander Bogachenkov, Alexander Garabadzhiu, Anton Ukolov, Vyacheslav Kosorukov Mar 2022

Natural Phaeosphaeride A Derivatives Overcome Drug Resistance Of Tumor Cells And Modulate Signaling Pathways, Victoria Abzianidze, Natalia Moiseeva, Diana Suponina, Sofya Zakharenkova, Nadezhda Rogovskaya, Lidia Laletina, Alvin A. Holder, Denis Krivorotov, Alexander Bogachenkov, Alexander Garabadzhiu, Anton Ukolov, Vyacheslav Kosorukov

Chemistry & Biochemistry Faculty Publications

n the present study, natural phaeosphaeride A (PPA) derivatives are synthesized. Anti-tumor studies are carried out on the PC3, K562, HCT-116, THP-1, MCF-7, A549, NCI-H929, Jurkat, and RPMI8226 tumor cell lines, and on the human embryonic kidney (HEK293) cell line. All the compounds synthesized turned out to have better efficacy than PPA towards the tumor cell lines listed. Among them, three compounds exhibited an ability to overcome the drug resistance of tumor cells associated with the overexpression of the P-glycoprotein by modulating the work of this transporter. Luminex xMAP technology was used to assess the effect of five synthesized compounds …


The Vagabond Flourine Atom Revisited: Dissociative Photoionization Of Tri- And Pentafluoropropene, Jessica K. De La Cruz Jan 2022

The Vagabond Flourine Atom Revisited: Dissociative Photoionization Of Tri- And Pentafluoropropene, Jessica K. De La Cruz

University of the Pacific Theses and Dissertations

Photoelectron Photoion Coincidence (PEPICO) Spectroscopy studies on two unsaturated hydrofluorocarbons (HFCs), also known as hydrofluoroolefines (HFOs), are presented here. Previously, the Sztáray group has studied the dissociation of trans-1,3,3,3-tetrafluoroprop-1-ene (ElixClean), which is a fourth-generation refrigerant and propellant and has lower global warming potential than its precursors. My study is an extension of the ElixClean study as it aims to explore how the different number of fluorine atoms impact the dissociation reactions of these molecules. Both 3,3,3-trifluoropropene (TFP) and cis-1,2,3,3,3- pentafluoropropene (PFP) are also utilized as propellants and refrigerants.Measurements were carried out with remote access to the CRF-PEPICO (combustion reactions followed …


Gc/Ms And Lc/Ms Approaches To Chemical Communication In Plants And Marine Cyanobacteria, Carolyn Keim Jan 2022

Gc/Ms And Lc/Ms Approaches To Chemical Communication In Plants And Marine Cyanobacteria, Carolyn Keim

University of the Pacific Theses and Dissertations

Natural products are small organic compounds synthesized by living organisms including plants, animals, and microbes. These fall into one of two categories, primary metabolites are required for survival, but secondary metabolites usually play a more accessory role. Extracts from organisms have proven to be useful to humans throughout history. Prior to evidence-based western medicine practices, natural products were the only source of medicine and remain as a treatment source for underdeveloped nations. Today, natural products have either been approved by or have served as the template for many FDA approved drugs. Based on a survey of all FDA approved drugs …


Bisindolylmaleimide Ix: A Novel Anti-Sars-Cov2 Agent Targeting Viral Main Protease 3clpro Demonstrated By Virtual Screening Pipeline And In-Vitro Validation Assays, Yash Gupta, Dawid Maciorowski, Samantha E. Zak, Krysten A. Jones, Rahul S. Kathayat, Saara-Anne Azizi, Raman Mathur, Catherine M. Pearce, David J. Ilc, Hamza Husein, Andrew S. Herbert, Ajay Bharti, Brijesh Rathi, Ravi Durvasula, Daniel P. Becker, Bryan C. Dickinson, John M. Dye, Prakasha Kempaiah Nov 2021

Bisindolylmaleimide Ix: A Novel Anti-Sars-Cov2 Agent Targeting Viral Main Protease 3clpro Demonstrated By Virtual Screening Pipeline And In-Vitro Validation Assays, Yash Gupta, Dawid Maciorowski, Samantha E. Zak, Krysten A. Jones, Rahul S. Kathayat, Saara-Anne Azizi, Raman Mathur, Catherine M. Pearce, David J. Ilc, Hamza Husein, Andrew S. Herbert, Ajay Bharti, Brijesh Rathi, Ravi Durvasula, Daniel P. Becker, Bryan C. Dickinson, John M. Dye, Prakasha Kempaiah

Chemistry: Faculty Publications and Other Works

SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2′-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = …


Cyclic Peptide-Gadolinium Nanocomplexes As Sirna Delivery Tools, Amir Nasrolahi Shirazi, Muhammad Imran Sajid, Dindyal Mandal, David Stickley, Stephanie Nagasawa, Joshua Long, Sandeep Lohan, Keykavous Parang, Rakesh Kumar Tiwari Oct 2021

Cyclic Peptide-Gadolinium Nanocomplexes As Sirna Delivery Tools, Amir Nasrolahi Shirazi, Muhammad Imran Sajid, Dindyal Mandal, David Stickley, Stephanie Nagasawa, Joshua Long, Sandeep Lohan, Keykavous Parang, Rakesh Kumar Tiwari

Pharmacy Faculty Articles and Research

We have recently reported that a cyclic peptide containing five tryptophan, five arginine, and one cysteine amino acids [(WR)5C], was able to produce peptide-capped gadolinium nanoparticles, [(WR)5C]-GdNPs, in the range of 240 to 260 nm upon mixing with an aqueous solution of GdCl3. Herein, we report [(WR)5C]-GdNPs as an efficient siRNA delivery system. The peptide-based gadolinium nanoparticles (50 µM) did not exhibit significant cytotoxicity (~93% cell viability at 50 µM) in human leukemia T lymphoblast cells (CCRF-CEM) and triple-negative breast cancer cells (MDA-MB-231) after 48 h. Fluorescence-activated cell sorting (FACS) analysis indicated …


Opioid Abuse: Are Doctors Creating The Problem?, Nguyen Tran Aug 2021

Opioid Abuse: Are Doctors Creating The Problem?, Nguyen Tran

Symposium of Student Scholars

Opioid abuse and overdose are serious health problems in the United States. Current research has concentrated on the treatment and prevention of opioid abuse. Using data from the Controlled Substance Utilization Review and Evaluation System (CURES) for California zip codes, my research focuses on the causes of opioid overdose by considering the relationships between the following variables within each zip code: population size, average number of prescriptions per doctor, percentage of people who receive opioid prescriptions, percentage of people receiving the same prescription drug from 3 or more doctors, average number of opioid pills per prescription and number of people …


A Novel Molecular And Cellular Study On Curcumin, Khang Nguyen Apr 2021

A Novel Molecular And Cellular Study On Curcumin, Khang Nguyen

Undergraduate Research Conference

Since the discovery of G-quartet (G4)by M. Gellertin 1962, much attention has been given on G4and C4(also called i-motif) as important drug design targets for the treatment of various human disorders. G4 forming sequences are prevalent in human genome, which includes many important regions of the eukaryotic genome, such as telomere ends, regulatory regions of many oncogenes c-kit, proto-oncogene c-myc, Kirsten rat sarcoma viral oncogene homolog (KRas). Curcumin(diferuloylmethane), an antiinflammatory and antioxidant compound, is found in the rhizomes of the plant Curcuma longa. The phytopolyphenolic chemical curcumin has been in the prominence due to its diverse pharmacological activities. Here, we …


Study Of Potential Drug For Alzheimer’S Disease: Small Organic Molecules, 1,5-Dhn And Tmpyp Inhibit Amyloid-Β Peptide Aggregation And Quench Hydroxyl Radicals, Matthew Murphy Apr 2021

Study Of Potential Drug For Alzheimer’S Disease: Small Organic Molecules, 1,5-Dhn And Tmpyp Inhibit Amyloid-Β Peptide Aggregation And Quench Hydroxyl Radicals, Matthew Murphy

Undergraduate Research Conference

Alzheimer disease (AD) is recognized as the six leading cause of the death in the United States. As of now, there is no cure for this fatal disease. The current treatment methods can only temporarily slow the worsening of symptoms. Research data suggested that an excess generation of hydroxyl radical in the brain causing the aggregation of Amyloid-β (Aβ) peptide which is considered to be responsible for Alzheimer's disease. Thus, there is a pressing need to find a suitable drug which can quench hydroxyl radicals effectively and stop or slow down the formation of aggregation of Aβ peptide. The primary …


Label‑Free Spectral Imaging To Study Drug Distribution And Metabolism In Single Living Cells, Qamar Alshammari, Rajasekharreddy Pala, Nir Katzir, Surya M. Nauli Feb 2021

Label‑Free Spectral Imaging To Study Drug Distribution And Metabolism In Single Living Cells, Qamar Alshammari, Rajasekharreddy Pala, Nir Katzir, Surya M. Nauli

Pharmacy Faculty Articles and Research

During drug development, evaluation of drug and its metabolite is an essential process to understand drug activity, stability, toxicity and distribution. Liquid chromatography (LC) coupled with mass spectrometry (MS) has become the standard analytical tool for screening and identifying drug metabolites. Unlike LC/MS approach requiring liquifying the biological samples, we showed that spectral imaging (or spectral microscopy) could provide high-resolution images of doxorubicin (dox) and its metabolite doxorubicinol (dox’ol) in single living cells. Using this new method, we performed measurements without destroying the biological samples. We calculated the rate constant of dox translocating from extracellular moiety into the cell and …


The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba Jan 2021

The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

β-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS–purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine …


Differential Modulation Of Sk Channel Subtypes By Phosphorylation, Young-Woo Nam, Dezhi Kong, Dong Wang, Razan Orfali, Rinzhin T. Sherpa, Jennifer Totonchy, Surya M. Nauli, Miao Zhang Jan 2021

Differential Modulation Of Sk Channel Subtypes By Phosphorylation, Young-Woo Nam, Dezhi Kong, Dong Wang, Razan Orfali, Rinzhin T. Sherpa, Jennifer Totonchy, Surya M. Nauli, Miao Zhang

Pharmacy Faculty Articles and Research

Small-conductance Ca2+-activated K+ (SK) channels are voltage-independent and are activated by Ca2+ binding to the calmodulin constitutively associated with the channels. Both the pore-forming subunits and the associated calmodulin are subject to phosphorylation. Here, we investigated the modulation of different SK channel subtypes by phosphorylation, using the cultured endothelial cells as a tool. We report that casein kinase 2 (CK2) negatively modulates the apparent Ca2+ sensitivity of SK1 and IK channel subtypes by more than 5-fold, whereas the apparent Ca2+ sensitivity of the SK3 and SK2 subtypes is only reduced by ∼2-fold, when heterologously …


Bayesian-Derived Vancomycin Auc24h Threshold For Nephrotoxicity In Special Populations, Dan Ho Jan 2021

Bayesian-Derived Vancomycin Auc24h Threshold For Nephrotoxicity In Special Populations, Dan Ho

University of the Pacific Theses and Dissertations

A Bayesian-derived 24-hour area under the concentration-time curve over minimum inhibitory concentration from broth microdilution (AUC24h/MICBMD) ratio of 400 to 600 is recommended as the new monitoring parameter for vancomycin to optimize efficacy and minimize nephrotoxicity. The AUC24h threshold of 600 mg*h/L for nephrotoxicity was extrapolated from studies that assessed the general population. It is unclear if this upper threshold is consistent or varies when used in special populations such as critically ill patients, obese patients, patients with preexisting renal disease, and patients on concomitant nephrotoxins.The purpose of this study is to investigate the generalizability of the proposed vancomycin AUC24h …


Bisphosohoglycertae Mutase: A Potential Target For Sickle Cell Disease, Anfal S. Aljahdali Jan 2021

Bisphosohoglycertae Mutase: A Potential Target For Sickle Cell Disease, Anfal S. Aljahdali

Theses and Dissertations

Bisphosphoglycerate mutase (BPGM) is a part of the erythrocyte glycolysis system. Specifically, it is a central enzyme in the Rapoport-Leubering pathway, a side glycolytic pathway involved in the regulation of the concentration of the natural allosteric effector of hemoglobin (Hb), 2,3-bisphosphoglycerate (2,3-BPG). BPGM catalyses the synthesis and hydrolysis of 2,3-BPG through its synthase and phosphatase activities. The synthase activity is the main role of BPGM, while the phosphatase activity is low and is activated by the physiological effector, 2-phosphoglycolate (2-PG) with the latter mechanism poorly understood.

BPGM activity and 2,3-BPG levels in red blood cells (RBCs) have a significant role …


Synthesis Of Fluorinated Pyrazoles Via Intra- And Intermolecular Cyclization Reactions, Matthew Saucier May 2020

Synthesis Of Fluorinated Pyrazoles Via Intra- And Intermolecular Cyclization Reactions, Matthew Saucier

Honors Theses

Pyrazole-based pharmaceuticals treat a wide array of diseases and conditions including obesity, diabetes, cancer, microbial and viral infections, pain and inflammation, and many neurological disorders. Syntheses for this biologically significant substrate have been well developed, but current methods to afford fluorinated pyrazoles are limited by variability and selectivity. By 2013, over 25% of all drugs available on the market contained the element fluorine due to its unique characteristics leading to improved target protein binding, bioavailability, and metabolic stability. In order to harness these pharmaceutical benefits of fluorine and overcome its difficulty in handling and stability, we set out to develop …


Elephant And Anchors ‒ Photoelectron Photoion Coincidence Spectroscopy Of Small Oxygenated Molecules, Apeter Weidner Jan 2020

Elephant And Anchors ‒ Photoelectron Photoion Coincidence Spectroscopy Of Small Oxygenated Molecules, Apeter Weidner

University of the Pacific Theses and Dissertations

The dissociative photoionization reactions of two small, oxygenated organics, namely 1,3-dioxolane and methyl vinyl ketone, were studied by photoelectron photoion coincidence (PEPICO) spectroscopy. Experiments involving 1,3-dioxolane were carried out in the photon energy range of 9.5‒13.5 eV. The statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely C3H5O2+ (m/z 73), C2H5O+ (m/z 45) and C2H4O+ (m/z 44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most …