Open Access. Powered by Scholars. Published by Universities.®

Pharmacy and Pharmaceutical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Pharmacy and Pharmaceutical Sciences

Fluoroethoxy-1,4-Diphenethylpiperidine And Piperazine Derivatives: Potent And Selective Inhibitors Of [3H]Dopamine Uptake At The Vesicular Monoamine Transporter-2, Emily R. Hankosky, Shyam R. Joolakanti, Justin R. Nickell, Venumadhav Janganati, Linda P. Dwoskin, Peter A. Crooks Dec 2017

Fluoroethoxy-1,4-Diphenethylpiperidine And Piperazine Derivatives: Potent And Selective Inhibitors Of [3H]Dopamine Uptake At The Vesicular Monoamine Transporter-2, Emily R. Hankosky, Shyam R. Joolakanti, Justin R. Nickell, Venumadhav Janganati, Linda P. Dwoskin, Peter A. Crooks

Pharmaceutical Sciences Faculty Publications

A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [3H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [3H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [3H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [3H]DA uptake at VMAT2, with Ki values in the nanomolar range (Ki = 0.014–0.073 μM). Compound 15d exhibited the highest affinity (Ki = 0.014 μM) at VMAT2, and had 160-, 5-, …


Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker Nov 2017

Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK …


Progress Toward The Development Of A "Catch/Release" Strategy For Isolating Salvinorin A, From Plant Materails Including Microwave Promotion, Douglas Armstrong, Logan Smith Oct 2017

Progress Toward The Development Of A "Catch/Release" Strategy For Isolating Salvinorin A, From Plant Materails Including Microwave Promotion, Douglas Armstrong, Logan Smith

Faculty Scholarship – Chemistry

We are investigating using the Diels-Alder and retro-Diels-Alder reactions as a potential “catch/release” strategy for isolating Salvinorin A from plant samples (Salvia divinorum), hopefully to improve the current method, which is very long and laborious. Salvinorin A has analgesic activity by activating the kappa opioid receptor, not the mu receptor, and thus it has potential for being developed into a non-addicting analgesic.


Design, Synthesis, And Biological Activity Of 5'-Phenyl-1,2,5,6-Tetrahydro-3,3'-Bipyridine Analogues As Potential Antagonists Of Nicotinic Acetylcholine Receptors, Yafei Jin, Xiaoqin Huang, Roger L. Papke, Emily M. Jutkiewicz, Hollis D Showalter, Chang-Guo Zhan Sep 2017

Design, Synthesis, And Biological Activity Of 5'-Phenyl-1,2,5,6-Tetrahydro-3,3'-Bipyridine Analogues As Potential Antagonists Of Nicotinic Acetylcholine Receptors, Yafei Jin, Xiaoqin Huang, Roger L. Papke, Emily M. Jutkiewicz, Hollis D Showalter, Chang-Guo Zhan

Pharmaceutical Sciences Faculty Publications

Starting from a known non-specific agonist (1) of nicotinic acetylcholine receptors (nAChRs), rationally guided structural-based design resulted in the discovery of a small series of 5′-phenyl-1,2,5,6-tetrahydro-3,3′-bipyridines (3a – 3e) incorporating a phenyl ring off the pyridine core of 1. The compounds were synthesized via successive Suzuki couplings on a suitably functionalized pyridine starting monomer 4 to append phenyl and pyridyl substituents off the 3- and 5-positions, respectively, and then make subsequent modifications on the flanking pyridyl ring to provide target compounds. Compound 3a is a novel antagonist which is highly selective for α3β4 nAChR (Ki = 123 nM) …


Selective Inhibitors Of Human Mpges-1 From Structure-Based Computational Screening, Ziyuan Zhou, Yaxia Yuan, Shuo Zhou, Kai Ding, Fang Zheng, Chang-Guo Zhan Aug 2017

Selective Inhibitors Of Human Mpges-1 From Structure-Based Computational Screening, Ziyuan Zhou, Yaxia Yuan, Shuo Zhou, Kai Ding, Fang Zheng, Chang-Guo Zhan

Molecular Modeling and Biopharmaceutical Center Faculty Publications

Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs. Although various mPGES-1 inhibitors have been reported in literature, few have entered clinical trials and none has been proven clinically useful so far. It is highly desired for developing the next generation of therapeutics for inflammation-related diseases to design and discover novel inhibitors of mPGES-1 with new scaffolds. Here, we report the identification of a series of new, potent and selective inhibitors of human mPGES-1 with diverse scaffolds through combined computational and experimental studies. The computationally modeled binding structures of these new inhibitors with mPGES-1 provide …


Traceable Peo-Poly(Ester) Micelles For Breast Cancer Targeting: The Effect Of Core Structure And Targeting Peptide On Micellar Tumor Accumulation, Shyam M. Garg, Igor M. Paiva, Mohammad R. Vakili, Rania Soudy, Kate Agopsowicz, Amir H. Soleimani, Mary Hitt, Kamaljit Kaur, Afsaneh Lavasanifar Aug 2017

Traceable Peo-Poly(Ester) Micelles For Breast Cancer Targeting: The Effect Of Core Structure And Targeting Peptide On Micellar Tumor Accumulation, Shyam M. Garg, Igor M. Paiva, Mohammad R. Vakili, Rania Soudy, Kate Agopsowicz, Amir H. Soleimani, Mary Hitt, Kamaljit Kaur, Afsaneh Lavasanifar

Pharmacy Faculty Articles and Research

Traceable poly(ethylene oxide)-poly(ester) micelles were developed through chemical conjugation of a near-infrared (NIR) dye to the poly(ester) end by click chemistry. This strategy was tried for micelles with poly(ε-caprolactone) (PCL) or poly(α-benzyl carboxylate-ε-caprolactone) (PBCL) cores. The surface of both micelles was also modified with the breast cancer targeting peptide, P18-4. The results showed the positive contribution of PBCL over PCL core on micellar thermodynamic and kinetic stability as well as accumulation in primary orthotopic MDA-MB-231 tumors within 4–96 h following intravenous administration in mice. This was in contrast to in vitro studies where better uptake of PEO-PCL versus PEO-PBCL micelles …


Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury Jul 2017

Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury

Mathematics, Physics, and Computer Science Faculty Articles and Research

Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions ofmenthol. There has been new evidence demonstrating thatmenthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at …


Discovery Of A Diaminopyrimidine Flt3 Inhibitor Active Against Acute Myeloid Leukemia, Jamie A. Jarusiewicz, Jae Yoon Jeon, Michele C. Connelly, Yizhe Chen, Lei Yang, Sharyn D. Baker, R. Kiplin Guy May 2017

Discovery Of A Diaminopyrimidine Flt3 Inhibitor Active Against Acute Myeloid Leukemia, Jamie A. Jarusiewicz, Jae Yoon Jeon, Michele C. Connelly, Yizhe Chen, Lei Yang, Sharyn D. Baker, R. Kiplin Guy

Pharmaceutical Sciences Faculty Publications

Profiling of the kinase-binding capabilities of an aminopyrimidine analogue detected in a cellular screen of the St. Jude small-molecule collection led to the identification of a novel series of FMS-like tyrosine kinase 3 (FLT3) inhibitors. Structure–activity relationship studies led to the development of compounds exhibiting good potency against MV4-11 and MOLM13 acute myelogenous leukemia cells driven by FLT3, regardless of their FLT3 mutation status. In vitro pharmacological profiling demonstrated that compound 5e shows characteristics suitable for further preclinical development.


Simplified Reversed Chloroquines To Overcome Malaria Resistance To Quinoline-Based Drugs, Bornface Gunsaru, Steven J. Burgess, Westin Morrill, Jane X. Kelly, Shawheen Shomloo, Martin J. Smilkstein, Katherine May Liebman, David H. Peyton May 2017

Simplified Reversed Chloroquines To Overcome Malaria Resistance To Quinoline-Based Drugs, Bornface Gunsaru, Steven J. Burgess, Westin Morrill, Jane X. Kelly, Shawheen Shomloo, Martin J. Smilkstein, Katherine May Liebman, David H. Peyton

Chemistry Faculty Publications and Presentations

Building on our earlier work of attaching a chemosensitizer (reversal agent) to a known drug pharmacophore, we have now expanded the structure-activity relationship study to include simplified versions of the chemosensitizer. The change from two aromatic rings in this head group to a single ring does not appear to detrimentally affect the antimalarial activity of the compounds. Data from in vitro heme binding and beta-hematin inhibition assays suggest that the single aromatic RCQ compounds retain activities against Plasmodium falciparum similar to those of CQ, although other mechanisms of action may be relevant to their activities.


Polymer Micelle Formulation For The Proteasome Inhibitor Drug Carfilzomib: Anticancer Efficacy And Pharmacokinetic Studies In Mice, Ji Eun Park, Se-Eun Chun, Derek Alexander Reichel, Jee Sun Min, Su-Chan Lee, Songhee Han, Gongmi Ryoo, Yunseok Oh, Shin-Hyung Park, Heon-Min Ryu, Kyung Bo Kim, Ho-Young Lee, Soo Kyung Bae, Younsoo Bae, Wooin Lee Mar 2017

Polymer Micelle Formulation For The Proteasome Inhibitor Drug Carfilzomib: Anticancer Efficacy And Pharmacokinetic Studies In Mice, Ji Eun Park, Se-Eun Chun, Derek Alexander Reichel, Jee Sun Min, Su-Chan Lee, Songhee Han, Gongmi Ryoo, Yunseok Oh, Shin-Hyung Park, Heon-Min Ryu, Kyung Bo Kim, Ho-Young Lee, Soo Kyung Bae, Younsoo Bae, Wooin Lee

Pharmaceutical Sciences Faculty Publications

Carfilzomib (CFZ) is a peptide epoxyketone proteasome inhibitor approved for the treatment of multiple myeloma (MM). Despite the remarkable efficacy of CFZ against MM, the clinical trials in patients with solid cancers yielded rather disappointing results with minimal clinical benefits. Rapid degradation of CFZ in vivo and its poor penetration to tumor sites are considered to be major factors limiting its efficacy against solid cancers. We previously reported that polymer micelles (PMs) composed of biodegradable block copolymers poly(ethylene glycol) (PEG) and poly(caprolactone) (PCL) can improve the metabolic stability of CFZ in vitro. Here, we prepared the CFZ-loaded PM, PEG-PCL-deoxycholic …


Mccrearamycins A-D, Geldanamycin-Derived Cyclopentenone Macrolactams From An Eastern Kentucky Abandoned Coal Mine Microbe, Xiachang Wang, Yinan Zhang, Larissa V. Ponomareva, Qingchao Qiu, Ryan M. Woodcock, Sherif I. Elshahawi, Xiabin Chen, Ziyuan Zhou, Bruce E. Hatcher, James C. Hower, Chang-Guo Zhan, Sean Parkin, Madan K. Kharel, S. Randal Voss, Khaled A. Shaaban, Jon S. Thorson Mar 2017

Mccrearamycins A-D, Geldanamycin-Derived Cyclopentenone Macrolactams From An Eastern Kentucky Abandoned Coal Mine Microbe, Xiachang Wang, Yinan Zhang, Larissa V. Ponomareva, Qingchao Qiu, Ryan M. Woodcock, Sherif I. Elshahawi, Xiabin Chen, Ziyuan Zhou, Bruce E. Hatcher, James C. Hower, Chang-Guo Zhan, Sean Parkin, Madan K. Kharel, S. Randal Voss, Khaled A. Shaaban, Jon S. Thorson

Center for Pharmaceutical Research and Innovation Faculty Publications

Four cyclopentenone‐containing ansamycin polyketides (mccrearamycins A–D), and six new geldanamycins (Gdms B–G, including new linear and mycothiol conjugates), were characterized as metabolites of Streptomyces sp. AD‐23‐14 isolated from the Rock Creek underground coal mine acid drainage site. Biomimetic chemical conversion studies using both simple synthetic models and Gdm D confirmed that the mccrearamycin cyclopentenone derives from benzilic acid rearrangement of 19‐hydroxy Gdm, and thereby provides a new synthetic derivatization strategy and implicates a potential unique biocatalyst in mccrearamycin cyclopentenone formation. In addition to standard Hsp90α binding and cell line cytotoxicity assays, this study also highlights the first assessment of Hsp90α …


One Ion To Rule Them All: Combined Antibacterial, Osteoinductive And Anticancer Properties Of Selenite-Incorporated Hydroxyapatite, Vuk Uskoković, Maheshwar Adiraj Iyer, Victoria M. Wu Jan 2017

One Ion To Rule Them All: Combined Antibacterial, Osteoinductive And Anticancer Properties Of Selenite-Incorporated Hydroxyapatite, Vuk Uskoković, Maheshwar Adiraj Iyer, Victoria M. Wu

Pharmacy Faculty Articles and Research

Although hydroxyapatite (HAp) has been doped with dozens of different ions, the quest for an ion imparting a combination of properties conducive to bone healing is still ongoing. Because of its protean potency and the similarity in size and shape to the phosphate tetrahedron, the selenite ion presents a natural ionic substitute in HAp. The incorporation of selenite into synthetic HAp using two different methods – co-precipitation and ion-exchange sorption – was studied for its effect on crystal properties and on a triad of biological responses: antibacterial, anticancer and osteoinductive. Co-precipitation yielded HAp with a higher selenite content than sorption …


Bis(N-Amidinohydrazones) And N-(Amidino)-N'-Aryl-Bishydrazones: New Classes Of Antibacterial/Antifungal Agents, Sanjib K. Shrestha, Liliia M. Kril, Keith D. Green, Stefan Kwiatkowski, Vitaliy M. Sviripa, Justin Robert Nickell, Linda Phyliss Dwoskin, David S. Watt, Sylvie Garneau-Tsodikova Jan 2017

Bis(N-Amidinohydrazones) And N-(Amidino)-N'-Aryl-Bishydrazones: New Classes Of Antibacterial/Antifungal Agents, Sanjib K. Shrestha, Liliia M. Kril, Keith D. Green, Stefan Kwiatkowski, Vitaliy M. Sviripa, Justin Robert Nickell, Linda Phyliss Dwoskin, David S. Watt, Sylvie Garneau-Tsodikova

Pharmaceutical Sciences Faculty Publications

The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicr obial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N'-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step, resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of …


Naloxone Therapy In Opioid Overdose Patients: Intranasal Or Intravenous?, Leiah Carney Jan 2017

Naloxone Therapy In Opioid Overdose Patients: Intranasal Or Intravenous?, Leiah Carney

Natural Sciences Student Research Presentations

This slide presentation for the Natural Science Poster Session at Parkland College describes the chemical makeup and effect of Naloxone, an opioid antagonist used in the treatment opioid overdose and summarizes a study comparing intravenous and intranasal delivery methods. Concludes that although there are conflicting studies, evidence supports intranasal delivery.


Thermostability Of The Coating, Antigen And Immunostimulator In An Adjuvanted Oral Capsule Vaccine Formulation, Stephanie Longet, Vincenzo Aversa, Daire O'Donnell, Joshua Tobias, Monica Rosa, Jan Holmgren, Ivan Coulter, Ed Lavelle Jan 2017

Thermostability Of The Coating, Antigen And Immunostimulator In An Adjuvanted Oral Capsule Vaccine Formulation, Stephanie Longet, Vincenzo Aversa, Daire O'Donnell, Joshua Tobias, Monica Rosa, Jan Holmgren, Ivan Coulter, Ed Lavelle

Articles

Oral vaccines present an attractive alternative to injectable vaccines for enteric diseases due to ease of delivery and the induction of intestinal immunity at the site of infection. However, susceptibility to gastrointestinal proteolysis, limited transepithelial uptake and a lack of clinically acceptable adjuvants present significant challenges. A further challenge to mass vaccination in developing countries is the very expensive requirement to maintain the cold chain. We recently described the effectiveness of a Single Multiple Pill® (SmPill®) adjuvanted capsule approach to enhance the effectiveness of a candidate enterotoxigenic Escherichia coli (ETEC) oral vaccine. Here it was demonstrated that this delivery system …


Infusion Of Essentail Oils In Agarose Gels To Create Antimicrobial Surfaces, Simran Guron Jan 2017

Infusion Of Essentail Oils In Agarose Gels To Create Antimicrobial Surfaces, Simran Guron

Honors College Theses

The current use of antibiotics is very excessive in multiple settings, from treating patients to being present in cleaning products. This overuse of antibiotics is resulting in multiple consequences, ranging from having a negative impact on human health to breeding antibiotic-resistant strains of microorganisms. Antimicrobial surfaces are useful today to aid in sterilization, especially in the medical setting. This would help prevent the spread of infection of microorganisms in these settings. In our research, agarose acts as the antimicrobial surface and essential oils would act as the solution incorporated into the surface that has the antimicrobial properties. Agarose is a …