Open Access. Powered by Scholars. Published by Universities.®

Pharmacy and Pharmaceutical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 33

Full-Text Articles in Pharmacy and Pharmaceutical Sciences

Fluoroethoxy-1,4-Diphenethylpiperidine And Piperazine Derivatives: Potent And Selective Inhibitors Of [3H]Dopamine Uptake At The Vesicular Monoamine Transporter-2, Emily R. Hankosky, Shyam R. Joolakanti, Justin R. Nickell, Venumadhav Janganati, Linda P. Dwoskin, Peter A. Crooks Dec 2017

Fluoroethoxy-1,4-Diphenethylpiperidine And Piperazine Derivatives: Potent And Selective Inhibitors Of [3H]Dopamine Uptake At The Vesicular Monoamine Transporter-2, Emily R. Hankosky, Shyam R. Joolakanti, Justin R. Nickell, Venumadhav Janganati, Linda P. Dwoskin, Peter A. Crooks

Pharmaceutical Sciences Faculty Publications

A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [3H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [3H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [3H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [3H]DA uptake at VMAT2, with Ki values in the nanomolar range (Ki = 0.014–0.073 μM). Compound 15d exhibited the highest affinity (Ki = 0.014 μM) at VMAT2, and had 160-, 5-, …


Green Chemistry Oxidative Modification Of Peptoids Utilizing Bleach And Tempo, Jesse Leland Roberts Dec 2017

Green Chemistry Oxidative Modification Of Peptoids Utilizing Bleach And Tempo, Jesse Leland Roberts

Graduate Theses and Dissertations

Biotherapeutic drugs, derived from biological molecules such as proteins and DNA, are becoming an integral and exceptionally critical aspect of modern medicine. Compared to common pharmaceutical drugs, biotherapeutics are much larger in size and have greater target specificity, allowing them to treat many chronic diseases ranging from cancer to rheumatoid arthritis. The major issue with protein based therapeutics is that they readily undergo proteolysis, or enzymatic degradation, when administered through subcutaneous injections. Traditionally, biotherapeutic modification procedures have centered on the use of PEG derivatives. This process, called PEGylation, is unfavorable due to the increases in molecular weights of the proteins …


Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker Nov 2017

Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK …


Progress Toward The Development Of A "Catch/Release" Strategy For Isolating Salvinorin A, From Plant Materails Including Microwave Promotion, Douglas Armstrong, Logan Smith Oct 2017

Progress Toward The Development Of A "Catch/Release" Strategy For Isolating Salvinorin A, From Plant Materails Including Microwave Promotion, Douglas Armstrong, Logan Smith

Faculty Scholarship – Chemistry

We are investigating using the Diels-Alder and retro-Diels-Alder reactions as a potential “catch/release” strategy for isolating Salvinorin A from plant samples (Salvia divinorum), hopefully to improve the current method, which is very long and laborious. Salvinorin A has analgesic activity by activating the kappa opioid receptor, not the mu receptor, and thus it has potential for being developed into a non-addicting analgesic.


Design, Synthesis, And Biological Activity Of 5'-Phenyl-1,2,5,6-Tetrahydro-3,3'-Bipyridine Analogues As Potential Antagonists Of Nicotinic Acetylcholine Receptors, Yafei Jin, Xiaoqin Huang, Roger L. Papke, Emily M. Jutkiewicz, Hollis D Showalter, Chang-Guo Zhan Sep 2017

Design, Synthesis, And Biological Activity Of 5'-Phenyl-1,2,5,6-Tetrahydro-3,3'-Bipyridine Analogues As Potential Antagonists Of Nicotinic Acetylcholine Receptors, Yafei Jin, Xiaoqin Huang, Roger L. Papke, Emily M. Jutkiewicz, Hollis D Showalter, Chang-Guo Zhan

Pharmaceutical Sciences Faculty Publications

Starting from a known non-specific agonist (1) of nicotinic acetylcholine receptors (nAChRs), rationally guided structural-based design resulted in the discovery of a small series of 5′-phenyl-1,2,5,6-tetrahydro-3,3′-bipyridines (3a – 3e) incorporating a phenyl ring off the pyridine core of 1. The compounds were synthesized via successive Suzuki couplings on a suitably functionalized pyridine starting monomer 4 to append phenyl and pyridyl substituents off the 3- and 5-positions, respectively, and then make subsequent modifications on the flanking pyridyl ring to provide target compounds. Compound 3a is a novel antagonist which is highly selective for α3β4 nAChR (Ki = 123 nM) …


Synthesis And Evaluation Of Tetrahydroprotoberberines As Dopamine Receptor Ligands, Satishkumar V. Gadhiya Sep 2017

Synthesis And Evaluation Of Tetrahydroprotoberberines As Dopamine Receptor Ligands, Satishkumar V. Gadhiya

Dissertations, Theses, and Capstone Projects

Dopamine (DA) receptors belong to the G-protein coupled receptors (GPCRs) family, divided in to two groups based on their high homology transmembrane domains; D1-like DA receptors (D1, D5) and D2-like DA receptors (D2-D4). DA receptor specific ligands have been exploited as a means for studying the prognosis and curing several CNS disorders. Though several efforts have been devoted to discover selective and potent DA receptor ligands, complete selectivity within the DA receptor subtypes remains a challenge.

Tetrahydroprotoberberines (THPBs) are a group of naturally occurring tetracyclic alkaloids that belong to the tetrahydroisoquinoline family. A wide range of biological activities are associated …


Selective Inhibitors Of Human Mpges-1 From Structure-Based Computational Screening, Ziyuan Zhou, Yaxia Yuan, Shuo Zhou, Kai Ding, Fang Zheng, Chang-Guo Zhan Aug 2017

Selective Inhibitors Of Human Mpges-1 From Structure-Based Computational Screening, Ziyuan Zhou, Yaxia Yuan, Shuo Zhou, Kai Ding, Fang Zheng, Chang-Guo Zhan

Molecular Modeling and Biopharmaceutical Center Faculty Publications

Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs. Although various mPGES-1 inhibitors have been reported in literature, few have entered clinical trials and none has been proven clinically useful so far. It is highly desired for developing the next generation of therapeutics for inflammation-related diseases to design and discover novel inhibitors of mPGES-1 with new scaffolds. Here, we report the identification of a series of new, potent and selective inhibitors of human mPGES-1 with diverse scaffolds through combined computational and experimental studies. The computationally modeled binding structures of these new inhibitors with mPGES-1 provide …


Traceable Peo-Poly(Ester) Micelles For Breast Cancer Targeting: The Effect Of Core Structure And Targeting Peptide On Micellar Tumor Accumulation, Shyam M. Garg, Igor M. Paiva, Mohammad R. Vakili, Rania Soudy, Kate Agopsowicz, Amir H. Soleimani, Mary Hitt, Kamaljit Kaur, Afsaneh Lavasanifar Aug 2017

Traceable Peo-Poly(Ester) Micelles For Breast Cancer Targeting: The Effect Of Core Structure And Targeting Peptide On Micellar Tumor Accumulation, Shyam M. Garg, Igor M. Paiva, Mohammad R. Vakili, Rania Soudy, Kate Agopsowicz, Amir H. Soleimani, Mary Hitt, Kamaljit Kaur, Afsaneh Lavasanifar

Pharmacy Faculty Articles and Research

Traceable poly(ethylene oxide)-poly(ester) micelles were developed through chemical conjugation of a near-infrared (NIR) dye to the poly(ester) end by click chemistry. This strategy was tried for micelles with poly(ε-caprolactone) (PCL) or poly(α-benzyl carboxylate-ε-caprolactone) (PBCL) cores. The surface of both micelles was also modified with the breast cancer targeting peptide, P18-4. The results showed the positive contribution of PBCL over PCL core on micellar thermodynamic and kinetic stability as well as accumulation in primary orthotopic MDA-MB-231 tumors within 4–96 h following intravenous administration in mice. This was in contrast to in vitro studies where better uptake of PEO-PCL versus PEO-PBCL micelles …


Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury Jul 2017

Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury

Mathematics, Physics, and Computer Science Faculty Articles and Research

Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions ofmenthol. There has been new evidence demonstrating thatmenthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at …


Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer Jul 2017

Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein …


Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer Jun 2017

Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. …


One-Pot Syntheses And Characterizations Of “Click-Able” Polyester Polymers For Potential Biomedical Applications, James F. Beach Ii May 2017

One-Pot Syntheses And Characterizations Of “Click-Able” Polyester Polymers For Potential Biomedical Applications, James F. Beach Ii

Electronic Theses & Dissertations

In this study, a synthetic polyester polymer was designed using polyethylene glycol, sorbitol, glutaric acid and 4-pentynoic acid as monomers. The synthesis was carried out using standard melt polymerization technique and catalyzed by Novozyme-435, an enzyme suitable for polyesterification of biocompatible compounds. The progress of the reaction was monitored with respect to time and vacuum exposure, with samples being subjected to standard characterization protocols. Polymers with high molecular weight and water solubility were chosen for further modification into folate-functionalized polymeric nanoparticles for targeted drug delivery to cancer cells. This was achieved by employing a solvent diffusion method, wherein the polymer …


Discovery Of A Diaminopyrimidine Flt3 Inhibitor Active Against Acute Myeloid Leukemia, Jamie A. Jarusiewicz, Jae Yoon Jeon, Michele C. Connelly, Yizhe Chen, Lei Yang, Sharyn D. Baker, R. Kiplin Guy May 2017

Discovery Of A Diaminopyrimidine Flt3 Inhibitor Active Against Acute Myeloid Leukemia, Jamie A. Jarusiewicz, Jae Yoon Jeon, Michele C. Connelly, Yizhe Chen, Lei Yang, Sharyn D. Baker, R. Kiplin Guy

Pharmaceutical Sciences Faculty Publications

Profiling of the kinase-binding capabilities of an aminopyrimidine analogue detected in a cellular screen of the St. Jude small-molecule collection led to the identification of a novel series of FMS-like tyrosine kinase 3 (FLT3) inhibitors. Structure–activity relationship studies led to the development of compounds exhibiting good potency against MV4-11 and MOLM13 acute myelogenous leukemia cells driven by FLT3, regardless of their FLT3 mutation status. In vitro pharmacological profiling demonstrated that compound 5e shows characteristics suitable for further preclinical development.


Simplified Reversed Chloroquines To Overcome Malaria Resistance To Quinoline-Based Drugs, Bornface Gunsaru, Steven J. Burgess, Westin Morrill, Jane X. Kelly, Shawheen Shomloo, Martin J. Smilkstein, Katherine May Liebman, David H. Peyton May 2017

Simplified Reversed Chloroquines To Overcome Malaria Resistance To Quinoline-Based Drugs, Bornface Gunsaru, Steven J. Burgess, Westin Morrill, Jane X. Kelly, Shawheen Shomloo, Martin J. Smilkstein, Katherine May Liebman, David H. Peyton

Chemistry Faculty Publications and Presentations

Building on our earlier work of attaching a chemosensitizer (reversal agent) to a known drug pharmacophore, we have now expanded the structure-activity relationship study to include simplified versions of the chemosensitizer. The change from two aromatic rings in this head group to a single ring does not appear to detrimentally affect the antimalarial activity of the compounds. Data from in vitro heme binding and beta-hematin inhibition assays suggest that the single aromatic RCQ compounds retain activities against Plasmodium falciparum similar to those of CQ, although other mechanisms of action may be relevant to their activities.


Polymer Micelle Formulation For The Proteasome Inhibitor Drug Carfilzomib: Anticancer Efficacy And Pharmacokinetic Studies In Mice, Ji Eun Park, Se-Eun Chun, Derek Alexander Reichel, Jee Sun Min, Su-Chan Lee, Songhee Han, Gongmi Ryoo, Yunseok Oh, Shin-Hyung Park, Heon-Min Ryu, Kyung Bo Kim, Ho-Young Lee, Soo Kyung Bae, Younsoo Bae, Wooin Lee Mar 2017

Polymer Micelle Formulation For The Proteasome Inhibitor Drug Carfilzomib: Anticancer Efficacy And Pharmacokinetic Studies In Mice, Ji Eun Park, Se-Eun Chun, Derek Alexander Reichel, Jee Sun Min, Su-Chan Lee, Songhee Han, Gongmi Ryoo, Yunseok Oh, Shin-Hyung Park, Heon-Min Ryu, Kyung Bo Kim, Ho-Young Lee, Soo Kyung Bae, Younsoo Bae, Wooin Lee

Pharmaceutical Sciences Faculty Publications

Carfilzomib (CFZ) is a peptide epoxyketone proteasome inhibitor approved for the treatment of multiple myeloma (MM). Despite the remarkable efficacy of CFZ against MM, the clinical trials in patients with solid cancers yielded rather disappointing results with minimal clinical benefits. Rapid degradation of CFZ in vivo and its poor penetration to tumor sites are considered to be major factors limiting its efficacy against solid cancers. We previously reported that polymer micelles (PMs) composed of biodegradable block copolymers poly(ethylene glycol) (PEG) and poly(caprolactone) (PCL) can improve the metabolic stability of CFZ in vitro. Here, we prepared the CFZ-loaded PM, PEG-PCL-deoxycholic …


Mccrearamycins A-D, Geldanamycin-Derived Cyclopentenone Macrolactams From An Eastern Kentucky Abandoned Coal Mine Microbe, Xiachang Wang, Yinan Zhang, Larissa V. Ponomareva, Qingchao Qiu, Ryan M. Woodcock, Sherif I. Elshahawi, Xiabin Chen, Ziyuan Zhou, Bruce E. Hatcher, James C. Hower, Chang-Guo Zhan, Sean Parkin, Madan K. Kharel, S. Randal Voss, Khaled A. Shaaban, Jon S. Thorson Mar 2017

Mccrearamycins A-D, Geldanamycin-Derived Cyclopentenone Macrolactams From An Eastern Kentucky Abandoned Coal Mine Microbe, Xiachang Wang, Yinan Zhang, Larissa V. Ponomareva, Qingchao Qiu, Ryan M. Woodcock, Sherif I. Elshahawi, Xiabin Chen, Ziyuan Zhou, Bruce E. Hatcher, James C. Hower, Chang-Guo Zhan, Sean Parkin, Madan K. Kharel, S. Randal Voss, Khaled A. Shaaban, Jon S. Thorson

Center for Pharmaceutical Research and Innovation Faculty Publications

Four cyclopentenone‐containing ansamycin polyketides (mccrearamycins A–D), and six new geldanamycins (Gdms B–G, including new linear and mycothiol conjugates), were characterized as metabolites of Streptomyces sp. AD‐23‐14 isolated from the Rock Creek underground coal mine acid drainage site. Biomimetic chemical conversion studies using both simple synthetic models and Gdm D confirmed that the mccrearamycin cyclopentenone derives from benzilic acid rearrangement of 19‐hydroxy Gdm, and thereby provides a new synthetic derivatization strategy and implicates a potential unique biocatalyst in mccrearamycin cyclopentenone formation. In addition to standard Hsp90α binding and cell line cytotoxicity assays, this study also highlights the first assessment of Hsp90α …


One Ion To Rule Them All: Combined Antibacterial, Osteoinductive And Anticancer Properties Of Selenite-Incorporated Hydroxyapatite, Vuk Uskoković, Maheshwar Adiraj Iyer, Victoria M. Wu Jan 2017

One Ion To Rule Them All: Combined Antibacterial, Osteoinductive And Anticancer Properties Of Selenite-Incorporated Hydroxyapatite, Vuk Uskoković, Maheshwar Adiraj Iyer, Victoria M. Wu

Pharmacy Faculty Articles and Research

Although hydroxyapatite (HAp) has been doped with dozens of different ions, the quest for an ion imparting a combination of properties conducive to bone healing is still ongoing. Because of its protean potency and the similarity in size and shape to the phosphate tetrahedron, the selenite ion presents a natural ionic substitute in HAp. The incorporation of selenite into synthetic HAp using two different methods – co-precipitation and ion-exchange sorption – was studied for its effect on crystal properties and on a triad of biological responses: antibacterial, anticancer and osteoinductive. Co-precipitation yielded HAp with a higher selenite content than sorption …


Bis(N-Amidinohydrazones) And N-(Amidino)-N'-Aryl-Bishydrazones: New Classes Of Antibacterial/Antifungal Agents, Sanjib K. Shrestha, Liliia M. Kril, Keith D. Green, Stefan Kwiatkowski, Vitaliy M. Sviripa, Justin Robert Nickell, Linda Phyliss Dwoskin, David S. Watt, Sylvie Garneau-Tsodikova Jan 2017

Bis(N-Amidinohydrazones) And N-(Amidino)-N'-Aryl-Bishydrazones: New Classes Of Antibacterial/Antifungal Agents, Sanjib K. Shrestha, Liliia M. Kril, Keith D. Green, Stefan Kwiatkowski, Vitaliy M. Sviripa, Justin Robert Nickell, Linda Phyliss Dwoskin, David S. Watt, Sylvie Garneau-Tsodikova

Pharmaceutical Sciences Faculty Publications

The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicr obial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N'-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step, resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of …


Naloxone Therapy In Opioid Overdose Patients: Intranasal Or Intravenous?, Leiah Carney Jan 2017

Naloxone Therapy In Opioid Overdose Patients: Intranasal Or Intravenous?, Leiah Carney

Natural Sciences Student Research Presentations

This slide presentation for the Natural Science Poster Session at Parkland College describes the chemical makeup and effect of Naloxone, an opioid antagonist used in the treatment opioid overdose and summarizes a study comparing intravenous and intranasal delivery methods. Concludes that although there are conflicting studies, evidence supports intranasal delivery.


Thermostability Of The Coating, Antigen And Immunostimulator In An Adjuvanted Oral Capsule Vaccine Formulation, Stephanie Longet, Vincenzo Aversa, Daire O'Donnell, Joshua Tobias, Monica Rosa, Jan Holmgren, Ivan Coulter, Ed Lavelle Jan 2017

Thermostability Of The Coating, Antigen And Immunostimulator In An Adjuvanted Oral Capsule Vaccine Formulation, Stephanie Longet, Vincenzo Aversa, Daire O'Donnell, Joshua Tobias, Monica Rosa, Jan Holmgren, Ivan Coulter, Ed Lavelle

Articles

Oral vaccines present an attractive alternative to injectable vaccines for enteric diseases due to ease of delivery and the induction of intestinal immunity at the site of infection. However, susceptibility to gastrointestinal proteolysis, limited transepithelial uptake and a lack of clinically acceptable adjuvants present significant challenges. A further challenge to mass vaccination in developing countries is the very expensive requirement to maintain the cold chain. We recently described the effectiveness of a Single Multiple Pill® (SmPill®) adjuvanted capsule approach to enhance the effectiveness of a candidate enterotoxigenic Escherichia coli (ETEC) oral vaccine. Here it was demonstrated that this delivery system …


Synthesis Of Ag10 Analogs And Optimization Of Ttr Ligands For Half-Life Enhancement (Tlhe) Of Peptides, Raghavendra Jampala Jan 2017

Synthesis Of Ag10 Analogs And Optimization Of Ttr Ligands For Half-Life Enhancement (Tlhe) Of Peptides, Raghavendra Jampala

University of the Pacific Theses and Dissertations

The misassembly of soluble proteins into toxic aggregates, including amyloid fibrils, underlies a large number of human degenerative diseases. Cardiac amyloidosis, which is most commonly, caused by aggregation of Immunoglobulin (Ig) light chains or transthyretin (TTR) in the cardiac muscle, represent an important and often underdiagnosed cause of heart failure. TTR-mediated amyloid cardiomyopathies are chronic and progressive conditions that lead to arrhythmias, biventricular heart failure, and death. As no Food and Drug Administration-approved drugs are currently available for treatment of these diseases, the development of therapeutic agents that prevent TTR-mediated cardiotoxicity is desired. AG10 is a potent and selective kinetic …


The Rational Investigation Of Anti-Cancer Peptide Specificity Using The Knob-Socket Model, Shivarni Patel Jan 2017

The Rational Investigation Of Anti-Cancer Peptide Specificity Using The Knob-Socket Model, Shivarni Patel

University of the Pacific Theses and Dissertations

Cancer has been a pervasive and deadly problem for many years. No treatments have been developed that effectively destroy cancer cells while also keeping healthy cells safe. In this work, the knob-socket construct is used to analyze two systems involved in cancer pathways, the PDZ domain and the Bcl-BH3 complex. Application of the knob-socket model in mapping the packing surface topology (PST) allows a direct analysis of the residue groups important for peptide specificity and affinity in both of these systems. PDZ domains are regulatory proteins that bind the C-terminus of peptides involved in the signaling pathway of cancer progression. …


Solubility Enhancement Of Model Compounds, Lavanya Pitani Jan 2017

Solubility Enhancement Of Model Compounds, Lavanya Pitani

University of the Pacific Theses and Dissertations

Solubility is the amount of solute in the solvent system at phase equilibrium with certain temperature and pressure. Many of the new chemical entities are lipophilic molecules that require techniques to enhance solubility. Solubility enhancement can be achieved by either physical and/or chemical modification of the drug. Various techniques are available for solubility enhancement of poorly soluble drugs include particle size reduction, salt formation, solid dispersions, use of surfactants, prodrug, crystal modification, etc.

In this study, the three model drugs belong to BCS class II and IV having low solubility with a certain range of physicochemical properties were studies in …


Investigating Secondary Structure Features Of Yap1 Protein Fragments Using Molecular Dynamics (Md) And Steered Molecular Dynamics (Smd) Simulations, Ferdiemar Cardenas Guinto Jr. Jan 2017

Investigating Secondary Structure Features Of Yap1 Protein Fragments Using Molecular Dynamics (Md) And Steered Molecular Dynamics (Smd) Simulations, Ferdiemar Cardenas Guinto Jr.

University of the Pacific Theses and Dissertations

Molecular dynamics (MD) is a powerful tool that can be applied to protein folding and protein structure. MD allows for the calculation of movement, and final position, of atoms in a biomolecule. These movements can be used to investigate the pathways that allow proteins to fold into energetically favorable structures. While MD is very useful, it still has its limitations. Most notable, computing power and time are of constant concern.

Protein structure is inherently important due to the direct link between the structure of a protein and its function. One of the four levels of protein structure, the secondary structure, …


Clinical Factors Associated With Hepatitis C Treatment Selection In A Veterans Affairs Population, Carly Anne Ranson Jan 2017

Clinical Factors Associated With Hepatitis C Treatment Selection In A Veterans Affairs Population, Carly Anne Ranson

University of the Pacific Theses and Dissertations

Background: Hepatitis C virus is currently the most common chronic blood borne pathogen in the United States, with only half of those infected aware of their condition. The cost for treatment is higher with Harvoni® (ledipasvir/sofosbuvir) than Viekira Pak® (ombitasvir/paritaprevir/ritonavir and dasabuvir). With finite resources available to treat patients, it is important to understand which clinical factors may influence treatment selection decisions.

Methods: The study is a 12-month medical record review within the Veterans Affairs (VA) system to evaluate significant relationships between selected clinical and sociodemographic factors and HCV treatment selection with either Harvoni® or Viekira Pak®. Clinical and demographic …


Liposome-Coated Magnesium Phosphate Nanoparticle For Delivery Of Cytochrome C Into Lung Cancer Cells A549, Weizhou Yue Jan 2017

Liposome-Coated Magnesium Phosphate Nanoparticle For Delivery Of Cytochrome C Into Lung Cancer Cells A549, Weizhou Yue

University of the Pacific Theses and Dissertations

Proteins are large biomolecules that have great therapeutic potential in treating many human diseases. However, chemical/enzymatic degradation, denaturation, and poor penetration into cells are some of the challenges for clinical use of intracellular proteins.

Previously, our group has developed cationic lipid-coated magnesium phosphate nanoparticle (LP MgP NP-CAT) formulations to enhance the intracellular delivery of the negatively charged protein catalase. The goal of the current research is to develop a formulation to deliver cytochrome c (CytC), a positively charged protein into lung cancer cells A549. Specifically, this thesis research prepares and tests liposome-coated magnesium phosphate nanoparticle for delivery of cytochrome c …


Preclinical Evaluation Of Ag10 For Therapeutic Use Against Familial Amyloid Cardiomyopathy And Its Application In Various Other Technologies, Mark Russell Miller Jan 2017

Preclinical Evaluation Of Ag10 For Therapeutic Use Against Familial Amyloid Cardiomyopathy And Its Application In Various Other Technologies, Mark Russell Miller

University of the Pacific Theses and Dissertations

Transthyretin (TTR) amyloidosis is a progressive, fatal disease in which deposition of amyloid derived from either mutant or wild-type TTR causes severe organ damage and dysfunction. TTR cardiomyopathy is an infiltrative, restrictive cardiomyopathy characterized by progressive left and right heart failure. Familial amyloid cardiomyopathy (FAC) is driven by pathogenic point mutations in the TTR gene that destabilize the TTR tetramer, prompting its dissociation into dimers and monomers, with subsequent misfolding, aggregation and deposition of toxic TTR amyloid aggregates in the myocardium. The most prevalent mutation that causes FAC is the V122I variant, carried by 3.4% of African Americans, that increases …


Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski Jan 2017

Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski

Theses and Dissertations--Pharmacy

RNA nanotechnology is an emerging field that holds great promise for advancing drug delivery and materials science. Recently, RNA nanoparticles have seen increased use as an in vivo delivery system. RNA was once thought to have little potential for in vivo use due to biological and thermodynamic stability issues. However, these issues have been solved by: (1) Finding of a thermodynamically stable three-way junction (3WJ) motif; (2) Chemical modifications to RNA confer enzymatic stability in vivo; and (3) the finding that RNA nanoparticles exhibit low immunogenicity in vivo.

In vivo biodistribution and pharmacokinetics are affected by the physicochemical …


A Diversity-Oriented Synthesis Approach To Functionalized Azaheterocycles Using Cyclic Alpha-Halo Eneformamides, Spencer A. Langevin Jan 2017

A Diversity-Oriented Synthesis Approach To Functionalized Azaheterocycles Using Cyclic Alpha-Halo Eneformamides, Spencer A. Langevin

All Master's Theses

Functionalized piperidines, azepanes, azamacrocycles, morpholines, and thiomorpholines are common structural motifs found in a wide range of pharmaceuticals such as carmegliptine, levofloxacin, thioridazine, claviciptic acid, and azithomycin. As a result, there is a strong desire to construct highly functionalized nitrogen-bearing ring scaffolds in order to construct a wide range of drug possibilities. There are several non-modular and step-uneconomical synthetic methods used in the construction of these aforementioned motifs such as ring closing metathesis, ring expansions, and intramolecular reductive amination. In this research, we present a step-economical, cost-effective, scalable, and diversity-oriented synthesis approach to highly functionalized N-heterocycles through the intermediacy of …


Discovering Small Molecule Inhibitors Targeted To Ligand-Stimulated Rage-Diaph1 Signaling Transduction, Jinhong Pan Jan 2017

Discovering Small Molecule Inhibitors Targeted To Ligand-Stimulated Rage-Diaph1 Signaling Transduction, Jinhong Pan

Legacy Theses & Dissertations (2009 - 2024)

The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of …