Open Access. Powered by Scholars. Published by Universities.®

Fungi Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Fungi

Solid-State Nmr Analysis Of Unlabeled Fungal Cell Walls From Aspergillus And Candida Species, Liyanage D. Fernando, Malitha C. Dickwella Widanage, S. Chandra Shekar, Frederic Mentink-Vigier, Ping Wang, Sungsool Wi, Tuo Wang Jul 2022

Solid-State Nmr Analysis Of Unlabeled Fungal Cell Walls From Aspergillus And Candida Species, Liyanage D. Fernando, Malitha C. Dickwella Widanage, S. Chandra Shekar, Frederic Mentink-Vigier, Ping Wang, Sungsool Wi, Tuo Wang

School of Medicine Faculty Publications

Fungal infections cause high mortality in immunocompromised individuals, which has emerged as a significant threat to human health. The efforts devoted to the development of antifungal agents targeting the cell wall polysaccharides have been hindered by our incomplete picture of the assembly and remodeling of fungal cell walls. High-resolution solid-state nuclear magnetic resonance (ss NMR) studies have substantially revised our understanding of the polymorphic structure of polysaccharides and the nanoscale organization of cell walls in Aspergillus fumigatus and multiple other fungi. However, this approach requires 13C/15N-enrichment of the sample being studied, severely restricting its application. Here we employ the dynamic …


N-Glycan Modification In Aspergillus Species, Elke Kainz, Andreas Gallmetzer, Christian Hatzl, Juergen H. Nett, Huijuan Li, Thorsten Schinko, Robert Pachlinger, Harald Berger, Yazmid Reyes-Dominguez, Andreas Bernreiter, Tillmann Gerngross, Stefan Wildt, Joseph Strauss Dec 2007

N-Glycan Modification In Aspergillus Species, Elke Kainz, Andreas Gallmetzer, Christian Hatzl, Juergen H. Nett, Huijuan Li, Thorsten Schinko, Robert Pachlinger, Harald Berger, Yazmid Reyes-Dominguez, Andreas Bernreiter, Tillmann Gerngross, Stefan Wildt, Joseph Strauss

Dartmouth Scholarship

The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. . This strategy allowed the isolation of a strain with a functional -1,2-mannosidase producing increased amounts of N-glycans of the Man 5 GlcNAc 2 type. This strain was further engineered by the introduction of …