Open Access. Powered by Scholars. Published by Universities.®

Fungi Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Fungi

N-Glycan Modification In Aspergillus Species, Elke Kainz, Andreas Gallmetzer, Christian Hatzl, Juergen H. Nett, Huijuan Li, Thorsten Schinko, Robert Pachlinger, Harald Berger, Yazmid Reyes-Dominguez, Andreas Bernreiter, Tillmann Gerngross, Stefan Wildt, Joseph Strauss Dec 2007

N-Glycan Modification In Aspergillus Species, Elke Kainz, Andreas Gallmetzer, Christian Hatzl, Juergen H. Nett, Huijuan Li, Thorsten Schinko, Robert Pachlinger, Harald Berger, Yazmid Reyes-Dominguez, Andreas Bernreiter, Tillmann Gerngross, Stefan Wildt, Joseph Strauss

Dartmouth Scholarship

The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. . This strategy allowed the isolation of a strain with a functional -1,2-mannosidase producing increased amounts of N-glycans of the Man 5 GlcNAc 2 type. This strain was further engineered by the introduction of …


Synthesis And Antifungal Properties Of Alpha-Methoxy And Alpha-Hydroxyl Substituted 4-Thiatetradecanoic Acids, Nestor Carballeira, Rosann O'Neill, Keykavous Parang Jan 2007

Synthesis And Antifungal Properties Of Alpha-Methoxy And Alpha-Hydroxyl Substituted 4-Thiatetradecanoic Acids, Nestor Carballeira, Rosann O'Neill, Keykavous Parang

Pharmacy Faculty Articles and Research

4-Thiatetradecanoic acid exhibited weak antifungal activities against Candida albicans (ATCC 60193), Cryptococcus neoformans (ATCC 6603 1), and Aspergillus niger (ATCC 16404) (MIC = 4.8-12.7 mM). It has been demonstrated that alpha-methoxylation efficiently blocks P-oxidation and significantly improve the antifungal activities of fatty acids. We examined whether antifungal activity of 4-thiatetradecanoic acid can be improved by a-substitution. The unprecedented (+/-)-2-tiydroxy-4-thiatetradecanoic acid was synthesized in four steps (20% overall yield), while the (+/-)-2-methoxy-4-thiatetradecanoic acid was synthesized in five steps (14% overall yield) starting from 1-decanethiol. The key step in the synthesis was the hydrolysis of a trimethylsilyloxynitrile. In general, the novel (+/-)-2-methoxy-4-thiatetradecanoic …