Open Access. Powered by Scholars. Published by Universities.®

Algae Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Algae

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


The Production Of Biobutanol From Biomass Via A Hybrid Biological/Chemical Process, Thomas Melvin Potts May 2015

The Production Of Biobutanol From Biomass Via A Hybrid Biological/Chemical Process, Thomas Melvin Potts

Graduate Theses and Dissertations

Biobutanol use as a fuel began in the late 19th century. Problems remain in economic viability. A review of the state of the art and need for technical advances is presented.

The technical potential of producing biofuel from a naturally occurring macroalgae was studied. The algae grow in Jamaica Bay, New York City, in contaminated water. The process consisted of mechanical harvesting, drying, grinding, and acid hydrolysis to form an algal sugar solution. Clostridium beijerinckii and C. saccharoperbutylacetonicum were used in an acetone butanol ethanol (ABE) fermentation to make butanol. Fermentation was followed by distillation Butanol concentrations during fermentation reached …


Lipid Extraction From Scenedesmus Sp. Microalgae For Biodiesel Production Using Hot Compressed Hexane, Hee-Yong Shin, Jae-Hun Ryu, Seong-Youl Bae, Czarena L. Crofcheck, Mark Crocker Aug 2014

Lipid Extraction From Scenedesmus Sp. Microalgae For Biodiesel Production Using Hot Compressed Hexane, Hee-Yong Shin, Jae-Hun Ryu, Seong-Youl Bae, Czarena L. Crofcheck, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

Lipid extraction from Scenedesmus sp. microalgae using hot compressed hexane (HCH) was investigated. Extraction performance was evaluated near the critical point of hexane and was compared with that of hexane extraction performed at room temperature and pressure, and the Bligh and Dyer extraction method. Experimental data showed that HCH significantly improves the lipid yield and rate of lipid extraction compared to the use of hexane at ambient conditions. High yields of biodiesel-convertible lipid fractions were rapidly achieved at the critical point of hexane, at a level comparable to that of the Bligh and Dyer method.


Co2 Recycling Using Microalgae For The Production Of Fuels, Michael H. Wilson, John Groppo, Andrew Placido, S. Graham, S. A. Morton Iii, Eduardo Santillan-Jimenez, Aubrey Shea, Mark Crocker, Czarena Crofcheck, Rodney Andrews Mar 2014

Co2 Recycling Using Microalgae For The Production Of Fuels, Michael H. Wilson, John Groppo, Andrew Placido, S. Graham, S. A. Morton Iii, Eduardo Santillan-Jimenez, Aubrey Shea, Mark Crocker, Czarena Crofcheck, Rodney Andrews

Center for Applied Energy Research Faculty and Staff Publications

CO2 capture and recycle using microalgae was demonstrated at a coal-fired power plant (Duke Energy’s East Bend Station, Kentucky). Using an in-house designed closed loop, vertical tube photobioreactor, Scenedesmus acutus was cultured using flue gas as the CO2 source. Algae productivity of 39 g/(m2 day) in June–July was achieved at significant scale (18,000 L), while average daily productivity slightly in excess of 10 g/(m2 day) was demonstrated in the month of December. A protocol for low-cost algae harvesting and dewatering was developed, and the conversion of algal lipids—extracted from the harvested biomass—to diesel-range hydrocarbons via catalytic …