Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Organisms

The Last Of Us In Therapy: How Mind-Controlling Fungi And Gut Bacteria Affect Your Mental Health, Anastasia Lyon May 2023

The Last Of Us In Therapy: How Mind-Controlling Fungi And Gut Bacteria Affect Your Mental Health, Anastasia Lyon

Journal of Pharmacology & Nutritional Sciences

The "psilocybiome" represents the mutually beneficial relationship between ourselves, our bacteria, and psychedelic drugs. This short review briefly discusses the benefits and limitations surrounding the potential for psychedelic therapy to synergize with gut bacteria to help regulate and maintain proper balance in the immune system, diet, and stress levels. Psychedelic therapy is a novel treatment strategy that has the potential to improve patient mental health, and, by identifying the types of gut bacteria present in patients, it can aid in personalizing medicine by determining how well their "psilocybiome" may respond.


Alzheimer’S Disease Genetics And Short-Chain Fatty Acid Treatment In Studies Of The Murine Gut Microbiome, Diana Zajac Jan 2023

Alzheimer’S Disease Genetics And Short-Chain Fatty Acid Treatment In Studies Of The Murine Gut Microbiome, Diana Zajac

Theses and Dissertations--Physiology

Elucidating the relationship of the gut microbiome in Alzheimer's Disease (AD) risk and pathogenesis is an area of intense interest. Since 60 to 80% of AD risk is related to genetics and APOE alleles represent the most impactful genetic risk factors for AD, their mechanism(s) of action are under intense scrutiny.

First, I conducted a study on APOE targeted replacement mice to investigate the impact of APOE alleles on the murine gut microbiome. The relative abundance of bacteria from the family Ruminococacceae and related genera increased with APOE2 status. The relative abundance of the class Erysipelotrichia increased with APOE4 status, …


Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender Apr 2021

Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender

Senior Theses

Due to its unique ability to serve as both an electron donor and acceptor, iron is utilized as a co-factor for many biological processes, including electron transfer, oxygen binding, and vitamin synthesis. Iron is also a key factor during fungal infections as the human host and invading pathogens battle over limited iron pools. The primary iron-responsive transcription factor Aft1 in the opportunistic pathogenic yeast Candida glabrata responds to iron deficiency by activating expression of iron acquisition genes. However, the mechanisms for sensing intracellular iron levels and regulating Aft1 activity in response to iron are unknown. The C. glabrata iron regulation …


Pyocyanin, A Virulence Factor Produced By Sepsis-Causing Pseudomonas Aeruginosa, Promotes Adipose Wasting And Cachexia, Nika Larian Jan 2019

Pyocyanin, A Virulence Factor Produced By Sepsis-Causing Pseudomonas Aeruginosa, Promotes Adipose Wasting And Cachexia, Nika Larian

Theses and Dissertations--Pharmacology and Nutritional Sciences

Sepsis is a leading cause of death among critically ill patients that results in metabolic alterations including hypercatabolism, lipoatrophy, and muscle wasting, contributing to the development of cachexia. Septic cachexia is associated with loss of body weight, fat mass, and lean mass and dysregulated immune function. There are currently no efficacious treatment strategies for septic cachexia, and nutritional interventions have limited success in preventing hypercatabolic wasting. Pyocyanin is a virulence factor produced by sepsis-causing Pseudomonas aeruginosa that has been shown to activate the aryl hydrocarbon receptor (AhR), increase inflammation, and produce reactive oxygen species. Thus, pyocyanin represents a novel mechanistic …


Programming Heart Disease: Does Poor Maternal Nutrition Alter Expression Of Cardiac Markers Of Proliferation, Hypertrophy, And Fibrosis In Offspring?, Cathy Chun May 2016

Programming Heart Disease: Does Poor Maternal Nutrition Alter Expression Of Cardiac Markers Of Proliferation, Hypertrophy, And Fibrosis In Offspring?, Cathy Chun

Honors Scholar Theses

Maternal malnutrition can affect fetal organogenesis, metabolic processes, and factors involved in developmental regulation. Of the many physiological effects poor maternal nutrition can induce in offspring, one of the most important organs affected is the heart. Cardiovascular disease has been associated with poor maternal diet. It also been suggested that hypertension can originate during impaired intrauterine growth and development. Hypertension can trigger hypertensive heart disease and is associated with numerous heart complications. We hypothesized that poor maternal nutrition would alter critical growth factors associated with normal heart development, specifically, insulin-like growth factor (IGF)-1, IGF-2, transforming growth factor (TGF)β, and connective …