Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 79

Full-Text Articles in Organisms

Tail-Tape-Fused Virion And Non-Virion Rna Polymerases Of A Thermophilic Virus With An Extremely Long Tail, Anastasiia Chaban, Leonid Minakhin, Ekaterina Goldobina, Brain Bae, Yue Hao, Sergei Borukhov, Leena Putzeys, Maarten Boon, Florian Kabinger, Rob Lavigne, Kira S Makarova, Eugene V Koonin, Satish K Nair, Shunsuke Tagami, Konstantin Severinov, Maria L Sokolova Jan 2024

Tail-Tape-Fused Virion And Non-Virion Rna Polymerases Of A Thermophilic Virus With An Extremely Long Tail, Anastasiia Chaban, Leonid Minakhin, Ekaterina Goldobina, Brain Bae, Yue Hao, Sergei Borukhov, Leena Putzeys, Maarten Boon, Florian Kabinger, Rob Lavigne, Kira S Makarova, Eugene V Koonin, Satish K Nair, Shunsuke Tagami, Konstantin Severinov, Maria L Sokolova

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Thermus thermophilus bacteriophage P23-45 encodes a giant 5,002-residue tail tape measure protein (TMP) that defines the length of its extraordinarily long tail. Here, we show that the N-terminal portion of P23-45 TMP is an unusual RNA polymerase (RNAP) homologous to cellular RNAPs. The TMP-fused virion RNAP transcribes pre-early phage genes, including a gene that encodes another, non-virion RNAP, that transcribes early and some middle phage genes. We report the crystal structures of both P23-45 RNAPs. The non-virion RNAP has a crab-claw-like architecture. By contrast, the virion RNAP adopts a unique flat structure without a clamp. Structure and sequence comparisons of …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Profiling And Verifying The Substrates Of E3 Ubiquitin Ligase Rsp5 In Yeast Cells, Shuai Fang, Geng Chen, Yiyang Wang, Rakhee Ganti, Tatiana A Chernova, Li Zhou, Savannah E Jacobs, Duc Duong, Hiroaki Kiyokawa, Yury O Chernoff, Ming Li, Natalia Shcherbik, Bo Zhao, Jun Yin Aug 2023

Profiling And Verifying The Substrates Of E3 Ubiquitin Ligase Rsp5 In Yeast Cells, Shuai Fang, Geng Chen, Yiyang Wang, Rakhee Ganti, Tatiana A Chernova, Li Zhou, Savannah E Jacobs, Duc Duong, Hiroaki Kiyokawa, Yury O Chernoff, Ming Li, Natalia Shcherbik, Bo Zhao, Jun Yin

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Yeast is an essential model organism for studying protein ubiquitination pathways; however, identifying the direct substrates of E3 in the cell presents a challenge. Here, we present a protocol for using the orthogonal ubiquitin transfer (OUT) cascade to profile the substrate specificity of yeast E3 Rsp5. We describe steps for OUT profiling, proteomics analysis, in vitro and in cell ubiquitination, and stability assay. The protocol can be adapted for identifying and verifying the ubiquitination targets of other E3s in yeast. For complete details on the use and execution of this protocol, please refer to Wang et al.


Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield May 2023

Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield

Honors Scholar Theses

Antibiotic treatment failure is a public health crisis, with a 2019 report stating that roughly 35,000 deaths occur in the United States yearly due to bacterial infections that are unresponsive to antibiotics (1). One complication in the treatment of bacterial infection is antibiotic persistence which further compromises our battle to effectively treat infection. Bacterial persisters can exist in clonal bacterial cultures and can tolerate antibiotic treatment by undergoing reversible phenotypic changes. They can survive drug concentrations that their genetically identical kin cannot. Some persisters remain in a slow growing state and are difficult to target with current antibiotics. A specific …


Effect Of Temperature On The Microbiome Of A Laboratory Reared Colony Of Haemaphysalis Longicornis Ticks, Brianna Mitchell May 2023

Effect Of Temperature On The Microbiome Of A Laboratory Reared Colony Of Haemaphysalis Longicornis Ticks, Brianna Mitchell

Poster Presentations

Honors research poster.

Haemaphysalis longicornis is a species of tick native to eastern Asia, including eastern China, Japan, eastern Russia, and Korea. To date, it has invaded and has now established its existence in Australia, New Zealand, and several of the Pacific Islands. This species of tick has recently been introduced to the United States, having a confirmed sighting in November 2017 on a sheep farm in New Jersey and since establishing populations in 18 states along the east coast and Appalachia. Based on the existing locations of H. longicornis in its native regions, as well as in the United …


A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani May 2023

A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani

Honors Scholar Theses

Bacteria, such as Escherichia coli, have an inducible system in response to DNA damage termed the SOS response. This system is activated when the replicative DNA polymerase (Pol) III encounters a lesion, uncouples from DNA helicase, and single-stranded DNA (ssDNA) accumulates at the replication fork. In this study, we investigated DNA-peptide crosslink (DpC), a common lesion that results from cross-linking of proteins or peptides, UV irradiation, and alkylating agents. To increase survival following formation of a lesion, the SOS response can utilize homologous recombination, translesion synthesis (TLS), or excision repair. With TLS, the levels of DNA Pol II, IV, …


Investigating The Antibacterial And Immunomodulatory Properties Of Lactobacillus Acidophilus Postbiotics, Rachael M. Wilson Apr 2023

Investigating The Antibacterial And Immunomodulatory Properties Of Lactobacillus Acidophilus Postbiotics, Rachael M. Wilson

Graduate School of Biomedical Sciences Theses and Dissertations

Probiotics are nonpathogenic microorganisms that have been extensively studied for their ability to prevent various infectious, gastrointestinal, and autoimmune diseases. The mechanisms underlying these probiotic effects have not been elucidated. However, we and other researchers have evidence suggesting that probiotic bacteria secrete metabolites that are antimicrobial and anti-inflammatory. As such, we developed a methodology to collect the secreted metabolites from a probiotic bacterium, Lactobacillus acidophilus, and tested this cell free filtrate (CFF) both in vitro and in vivo. Using this CFF, we have demonstrated that L. acidophilus secretes a molecule(s) that has specific bactericidal activity against the opportunistic pathogen, Pseudomonas …


Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle Apr 2023

Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle

Graduate School of Biomedical Sciences Theses and Dissertations

For normal cellular function, exogenous signals must be interpreted and careful coordination must take place to ensure desired fates are achieved. Mitochondria are key regulatory nodes of cellular fate, undergoing fission/fusion cycles depending on the needs of the cell, and help mediate cell death fates. The CKM or Cdk8 kinase module, is composed of cyclin C (CC), Cdk8, Med12/12L, and Med13/13L. The CKM controls RNA polymerase II, acting as a regulator of stress-response and growth-control genes. Following stress, CC translocates to the mitochondria and interacts with both fission and iRCD apoptotic mediators. We hypothesize that CC represents a key mediator, …


Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry Feb 2023

Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We …


Using Nspefs To Sensitize Mrsa To Vancomycin Treatment, Areej Malik, Alexandra E. Chittams-Miles, Claudia Muratori, Erin B. Purcell Jan 2023

Using Nspefs To Sensitize Mrsa To Vancomycin Treatment, Areej Malik, Alexandra E. Chittams-Miles, Claudia Muratori, Erin B. Purcell

The Graduate School Posters

Staphylococcus aureus (S. aureus) is a biofilm-forming pathogen. S. aureus treatment is marked by the development of antibiotic resistance. The public health impact has increased since the emergence of methicillin-resistant S. aureus (MRSA), which has started to show intermediate resistance to vancomycin in MRSA. Nano-second pulse electric fields (nsPEFs) are low-energy and high-power electric pulses, which have been suggested to sensitize pathogens to antibiotics by creating transient pores in the cell membrane. Our combinatorial treatment includes nsPEF pre-treatment and vancomycin post-treatment of MRSA cells. Our results show that MRSA log phase cells had the highest susceptibility to vancomycin. …


Difference In The Inhibitory Effects Of Violacein On Various Yeast Isolate Strains From The Hudson Valley Region, Lilah Dorothy Blaker Jan 2023

Difference In The Inhibitory Effects Of Violacein On Various Yeast Isolate Strains From The Hudson Valley Region, Lilah Dorothy Blaker

Senior Projects Spring 2023

Violacein is a purple pigmented compound produced by numerous bacterial species including Janthinobacterium lividum. Studies into violacein have found it to have a multitude of medicinal properties, from antifungal, antibiotic, to antitumor activity. Research has shown that violacein significantly inhibits both tumor and fungal growth and it has been shown to have higher cyotoxicity in pathogenic or cancerous cells than in healthy ones, giving it great potential as for use as a pharmaceutical drug in humans, alongside the fact that as a bacterial compound it’s easier and faster to produce than some other drugs. Violacein has also been shown to …


Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble Dec 2022

Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble

Graduate School of Biomedical Sciences Theses and Dissertations

Although the cytosolic and bacterial translation systems are well studied, much less is known about translation in mitochondria. In the yeast Saccharomyces cerevisiae, mitochondrial gene expression is predominately regulated by translational activators. These regulators are thought to promote translation by binding the elongated 5’-UTRs on their target mRNAs. Since mammalian mitochondrial mRNAs generally lack 5’-UTRs, they must regulate translation by other mechanisms. As expected, most yeast translational activators lack orthologues in mammals. Recently, a mitochondrial gene-specific translational activator, TACO1, was reported in mice and humans. To better define its role in mitochondrial translation I examined the yeast TACO1 orthologue, DPC29. …


The Effects Of Prenatal Cannabis Exposure On The Basolateral Amygdala, Karen Kw Wong Aug 2022

The Effects Of Prenatal Cannabis Exposure On The Basolateral Amygdala, Karen Kw Wong

Undergraduate Student Research Internships Conference

Clinical and preclinical studies indicate prenatal cannabis exposure (PCE) pathologically affects fetal brain development and may increase vulnerability to neuropsychiatric disorders, including schizophrenia and mood/anxiety disorders. In review research from our lab suggests that fetal exposure to Δ9-THC sex-selectively impairs mesocorticolimbic (MCL) circuit function. However, there is a distinct lack of focus on PCE models on the BLA. The BLA plays a central role within the MCL where it directly interacts with the VTA, PFC and HIPP. Importantly, our model exhibits significant VTA hyperdopaminergic activity, and sex-specific alterations to PFC/HIPP glutamate firing, alongside region- and sex-specific changes in dopamine (DA), …


Flippase Inhibitors As Antimicrobial Agents, Robert Tancer May 2022

Flippase Inhibitors As Antimicrobial Agents, Robert Tancer

Seton Hall University Dissertations and Theses (ETDs)

Drug resistant microbes are a considerable challenge for modern medicine to overcome. The research described in this dissertation involved development of lipid flippase inhibitors and investigating their potential as antimicrobial agents against various drug resistant microbes. The microbes primarily investigated were methicillin resistant Staphylococcus aureus (MRSA) & Cryptococcus neoformans. Chapter 1 reviews the historical perspective and summarizes the current state of the field of research. In Chapter 2, the design space of an antimicrobial peptide known as humimycin was explored and the effects of modifications on its structure were observed against MRSA. Several key observations resulted. Most notably, the …


Cannabinoids And Retinal Fibrotic Disorders., Lucy June Sloan May 2022

Cannabinoids And Retinal Fibrotic Disorders., Lucy June Sloan

Electronic Theses and Dissertations

Retinal fibrosis is detrimental to vision. Retinal pigment epithelial (RPE) cells contribute to several retinal fibrotic diseases. Upon exposure to TGF-β, a key fibrotic cytokine, RPE cells trans-differentiate to myofibroblasts marked by the integration of α-SMA fibers into F-actin stress fibers, which confer strong contractility. Myofibroblasts produce and contract the collagen-rich fibrotic scar and disrupt retinal architecture. In this study, we investigated the in vitro effects of the putative endocannabinoid compound N-oleoyl dopamine (OLDA) on TGF-β2 induced porcine RPE cell contraction and α-SMA expression. Using an in vitro collagen matrix contraction assay, we found that OLDA inhibited TGF-β2 induced contraction …


The Discovery And Analysis Of Mycobacteriophage “Rita”, Anna Fakhri Apr 2022

The Discovery And Analysis Of Mycobacteriophage “Rita”, Anna Fakhri

Chemistry & Biochemistry Student Scholarship

Anna Fakhri ’24
Major: Biochemistry
Faculty Mentor: Dr. Kathleen Cornely, Chemistry and Biochemistry

Mycobacteriophage “Rita” was isolated on Mycobacterium smegmatis mc2155 from an enriched soil sample from North Easton, Massachusetts. As Rita infects Mycobacterium smegmatis, further study of the phage was completed in order to determine its ability to be utilized in phage therapy for infections caused by pathogenic Mycobacterium, such as Mycobacterium tuberculosis and Mycobacterium abscessus. Once isolated, the phage DNA was analyzed through PCR to determine the phage belonged to cluster F and subcluster F1. The phage DNA was sequenced, and a genome annotation was completed. The annotation …


The Influence Of Hydrogen Peroxide On The Enrichment Of Fe(Iii) Reducing Bacteria From Acid Mine Drainage, Susami Seth Jan 2022

The Influence Of Hydrogen Peroxide On The Enrichment Of Fe(Iii) Reducing Bacteria From Acid Mine Drainage, Susami Seth

Williams Honors College, Honors Research Projects

It is hypothesized that the ocean of Europa, a Jupiter moon, hosts bacteria on its oceanic floor. Understanding how Fe(III) reducing bacteria (FeRB) from AMD utilize organic materials within its surrounding environment outlines how FeRB could thrive and tolerate extreme conditions. FeRB are known to tolerate metals and highly reactive oxidants species (ROS), but in this experiment, H2O2 was the experimental factor to further test FeRB tolerance. H2O2 is a common ROS and is damaging to living material such as proteins, DNA, and RNA. A range of H2O2 concentrations were fed …


Cryptococcus Neoformans Melanization Incorporates Multiple Catecholamines To Produce Polytypic Melanin, Rosanna P. Baker, Christine Chrissian, Ruth E. Stark, Arturo Casadevall Dec 2021

Cryptococcus Neoformans Melanization Incorporates Multiple Catecholamines To Produce Polytypic Melanin, Rosanna P. Baker, Christine Chrissian, Ruth E. Stark, Arturo Casadevall

Publications and Research

Melanin is a major virulence factor in pathogenic fungi that enhances the ability of fungal cells to resist immune clearance. Cryptococcus neoformans is an important human pathogenic fungus that synthesizes melanin from exogenous tissue catecholamine precursors during infection, but the type of melanin made in cryptococcal meningoencephalitis is unknown. We analyzed the efficacy of various catecholamines found in brain tissue in supporting melanization using animal brain tissue and synthetic catecholamine mixtures reflecting brain tissue proportions. Solid-state NMR spectra of the melanin pigment produced from such mixtures yielded more melanin than expected if only the preferred constituent dopamine had been incorporated, …


Effects Of Trans-Acting Factors On The Translational Machinery In Yeast, Brandon M. Trainor Aug 2021

Effects Of Trans-Acting Factors On The Translational Machinery In Yeast, Brandon M. Trainor

Graduate School of Biomedical Sciences Theses and Dissertations

Synthesis of proteins, or translation, is a complex biological process requiring the coordinated effort of numerous protein and RNA factors. Central to translation is the ribosome, a complex macromolecular complex consisting of both ribosomal RNA (rRNA) and ribosomal protein (r-protein). Ribosomes are essential and are one of the oldest and most abundant biomolecules across all forms of life. In addition to the ribosome, translation requires messenger RNA (mRNA), transfer-RNA conjugated to an amino acid (aa-tRNA), translation factors, and energy in the form of ATP and GTP. Translation universally occurs in four major stages, initiation, elongation, termination, and recycling, with initiation …


Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender Apr 2021

Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender

Senior Theses

Due to its unique ability to serve as both an electron donor and acceptor, iron is utilized as a co-factor for many biological processes, including electron transfer, oxygen binding, and vitamin synthesis. Iron is also a key factor during fungal infections as the human host and invading pathogens battle over limited iron pools. The primary iron-responsive transcription factor Aft1 in the opportunistic pathogenic yeast Candida glabrata responds to iron deficiency by activating expression of iron acquisition genes. However, the mechanisms for sensing intracellular iron levels and regulating Aft1 activity in response to iron are unknown. The C. glabrata iron regulation …


Covid19 Disease Map, A Computational Knowledge Repository Of Virus–Host Interaction Mechanisms, Marek Ostaszewski, Tomáš Helikar, Bhanwar Lal Puniya, A Host Of Co-Authors, Covid-19 Disease Map Community Jan 2021

Covid19 Disease Map, A Computational Knowledge Repository Of Virus–Host Interaction Mechanisms, Marek Ostaszewski, Tomáš Helikar, Bhanwar Lal Puniya, A Host Of Co-Authors, Covid-19 Disease Map Community

Department of Biochemistry: Faculty Publications

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, …


Hexadecane Petroleum, And Biofuel Utilization In Marine Bacteria Isolated From Ballast Tanks, Alex Yashchenko May 2020

Hexadecane Petroleum, And Biofuel Utilization In Marine Bacteria Isolated From Ballast Tanks, Alex Yashchenko

Student Dissertations & Theses

This study characterized the growth of bacteria isolated from ballast tank fluids in hexadecane, petroleum, plant, and algae-derived fuels. The study was performed to explore the capacity of ballast tank isolates to survive and grow within fuels that may be stored within ballast tanks. Results of the hexadecane analysis indicated that most isolates had higher viable cell counts in media supplemented with hexadecane. Members of Alteromonas, Pseudoalteromonas, and a single Brevundimonas species had viable cell counts that were one or several orders ofmagnitude greater than that of controls. Results offuel analysis indicated higher viable cell counts in pure JP-5 and …


Subcellular Localization Of Tobacco Sabp2 Under Normal And Stress Conditions, Sanjeev Das May 2020

Subcellular Localization Of Tobacco Sabp2 Under Normal And Stress Conditions, Sanjeev Das

Undergraduate Honors Theses

Subcellular Localization of Tobacco SABP2 under Normal and Stress Conditions

Salicylic acid (SA), a phytohormone, plays an important role in plant physiology. SA mediated innate immune pathway is an important pathway for plant immunity against pathogens. Plants resisting pathogen infection synthesize higher levels of Methyl Salicylate (MeSA), which is then converted to SA by the esterase activity of Salicylic Acid Binding Protein 2 (SABP2). The high level of the converted SA leads to enhanced pathogen resistance. The study of subcellular localization of a protein is critical in explaining its potential biochemical functions. SABP2 tagged with eGFP was expressed transiently in …


Dgts Production As A Phosphate Starvation Response In The Human Fungal Pathogen Candida Albicans, Caleb Wehling Apr 2020

Dgts Production As A Phosphate Starvation Response In The Human Fungal Pathogen Candida Albicans, Caleb Wehling

School of Biological Sciences: Dissertations, Theses, and Student Research

Betaine lipids are a class of membrane lipids with betaine head groups. Three betaine lipids are known - diacylglyceryltrimethylhomoserine (DGTS), diacylglycerylhydroxymethylalanine (DGTA), and diacylglycerylcarboxymethylcholine (DGCC). Betaine lipids are most common in algae, although DGTS, the most common betaine lipid, is also found in many bacteria and fungi. Organisms which produce betaine lipids (especially DGTS) often don’t produce phosphatidylcholine (PtdCho), and DGTS structure resembles PtdCho structure without any phosphorous, leading to the hypothesis that betaine lipids may substitute for phospholipids in some organisms. This has been confirmed by discoveries that some organisms are capable of switching their membrane composition from PtdCho …


The Role Of Manganese In Streptococcus Sanguinis, Tanya M. Puccio Jan 2020

The Role Of Manganese In Streptococcus Sanguinis, Tanya M. Puccio

Theses and Dissertations

Streptococcus sanguinis is primarily associated with oral health as a commensal bacterium. As an opportunistic pathogen, S. sanguinis is capable of colonizing heart valve vegetations, leading to the disease infective endocarditis. Previous studies from our lab have identified the high-affinity manganese transporter SsaACB as important for endocarditis virulence. The impact that manganese depletion has on S. sanguinis had never been evaluated and a secondary manganese transporter has not been identified. Thus, we employed the use of a fermentor to control large-scale growth over time and depleted manganese in an ΔssaACB mutant using a metal chelator, EDTA. The changes in …


Antifungal Defense Molecules From Bacterial Symbionts Of North American Trachymyrmex Ants, Georgia Scherer Jan 2020

Antifungal Defense Molecules From Bacterial Symbionts Of North American Trachymyrmex Ants, Georgia Scherer

CMC Senior Theses

Defensive symbioses, in which microbes provide molecular defenses for an animal host, hold great potential as untapped sources of therapeutically useful antibiotics. Fungus-growing ants use antifungal defenses from bacterial symbionts to suppress pathogenic fungi in their nests. Preliminary chemical investigations of symbiotic bacteria from this large family of ants have uncovered novel antifungal molecules with therapeutic potential, such as dentigerumycin and selvamicin.

In this study, the bacterial symbionts of North American Trachymyrmex fungus-growing ants are investigated for antifungal molecules. Plate-based bioassays using ecologically-relevant fungal pathogens confirmed that these bacteria have antifungal activity. In order to purify and identify the antifungal …


The Potential For Dickeya Dianthicola To Be Vectored By Two Common Insect Pests Of Potatoes, Jonas K. Insinga Dec 2019

The Potential For Dickeya Dianthicola To Be Vectored By Two Common Insect Pests Of Potatoes, Jonas K. Insinga

Electronic Theses and Dissertations

Dickeya dianthicola (Samson) causing blackleg and soft rot was first detected in potatoes grown in Maine in 2014. Previous work has suggested that insects, particularly aphids, may be able to vector bacteria in this genus between plants, but no conclusive work has been done to confirm this theory. In order to determine whether insect-mediated transmission is likely to occur in potato fields, two model potato pests common in Maine were used: the Colorado potato beetle (Leptinotarsa decimlineata Say) and the green peach aphids (Myzus persicae Sulzer). Olfactometry and recruitment experiments evaluated if either insect discriminates between infected and …


The Essential Role Of Carbon Metabolism In The Virulence Of Cryptococcus Neoformans, Mara Weigner Oct 2019

The Essential Role Of Carbon Metabolism In The Virulence Of Cryptococcus Neoformans, Mara Weigner

Senior Honors Theses

Cryptococcus neoformans infections are a major cause of meningoencephalitis in immunosuppressed patients worldwide. Inhaled as spores or desiccated yeast cells, C. neoformans can undergo metabolic changes in response to the new host environment that allow it to cross the blood brain barrier and cause deadly central nervous system (CNS) infections. Nutrient acquisition, and specifically carbon metabolism, is critical for survival and proliferation within the host. Notably, efficient carbon metabolism is necessary to produce the polysaccharide capsule, which is arguably C. neoformans’ most important and well-studied virulence factor. As such, a better understanding of carbon acquisition and regulation is essential for …


A Rapid Viability And Drug‑Susceptibility Assay Utilizing Mycobacteriophage As An Indicator Of Drug Susceptibilities Of Anti‑Tb Drugs Against Mycobacterium Smegmatis Mc2 155, Gillian Catherine Crowley, Jim O'Mahony, Aidan Coffey, Riona G. Sayers, Paul D. Cotter Jun 2019

A Rapid Viability And Drug‑Susceptibility Assay Utilizing Mycobacteriophage As An Indicator Of Drug Susceptibilities Of Anti‑Tb Drugs Against Mycobacterium Smegmatis Mc2 155, Gillian Catherine Crowley, Jim O'Mahony, Aidan Coffey, Riona G. Sayers, Paul D. Cotter

Department of Biological Sciences Publications

Background: A rapid in-house TM4 mycobacteriophage-based assay, to identify multidrug resistance against various anti-tuberculosis drugs, using the fast-growing Mycobacterium smegmatis mc2 155 in a microtiter plate format was evaluated, based on phage viability assays. Methods: A variety of parameters were optimized before the study including the minimum incubation time for the drugs, phage and M. smegmatis mc2 155 to be in contact. An increase in phage numbers over 2 h was indicative that M. smegmatis mc2 155 is resistant to the drugs under investigation, however when phage numbers remained static, M. smegmatis mc2 155 found to …


Anti-Crispr Vs. Crispr: The Evolutionary Arms Race Between Microorganisms, Rachael M. St. Jacques May 2019

Anti-Crispr Vs. Crispr: The Evolutionary Arms Race Between Microorganisms, Rachael M. St. Jacques

Masters Theses, 2010-2019

CRISPR arrays are a defense mechanism employed by bacteria against viral invaders. Cas proteins do the work in detecting, capturing, and integrating the viral DNA into the CRISPR array (Barrangou et al., 2007). Anti-CRISPR proteins are produced by phages, viruses that infect bacteria, to stop the bacterial host’s CRISPR-Cas complex from interrupting the phage life cycle (Bondy-Denomy, et al., 2015).

SEA-PHAGES is a course-based bacteriophage research network composed of 120 colleges and known at James Madison University as Viral Discovery. JMU uses the unsequenced Streptomyces griseus ATCC10137 as a host for bacteriophage discovery and propagation, and in this study we …