Open Access. Powered by Scholars. Published by Universities.®

Radiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Radiology

Technology Assessment Of Automated Atlas Based Segmentation In Prostate Bed Contouring, Jeremiah Hwee, Alexander Louie, Stewart Gaede, Glenn Bauman, David D'Souza, Tracy Sexton, Michael Lock, Belal Ahmad, George Rodrigues Nov 2012

Technology Assessment Of Automated Atlas Based Segmentation In Prostate Bed Contouring, Jeremiah Hwee, Alexander Louie, Stewart Gaede, Glenn Bauman, David D'Souza, Tracy Sexton, Michael Lock, Belal Ahmad, George Rodrigues

Michael Lock

BACKGROUND: Prostate bed (PB) contouring is time consuming and associated with inter-observer variability. We evaluated an automated atlas-based segmentation (AABS) engine in its potential to reduce contouring time and inter-observer variability.

METHODS: An atlas builder (AB) manually contoured the prostate bed, rectum, left femoral head (LFH), right femoral head (RFH), bladder, and penile bulb of 75 post-prostatectomy cases to create an atlas according to the recent RTOG guidelines. 5 other Radiation Oncologists (RO) and the AABS contoured 5 new cases. A STAPLE contour for each of the 5 patients was generated. All contours were anonymized and sent back to the …


Radiation Dose Distributions In Three Dimensions From Tomographic Optical Density Scanning Of Polymer Gels: Ii. Optical Properties Of The Bang Polymer Gel, Yevgeniya Zastavker, Marek Maryanski, John Gore Jun 2012

Radiation Dose Distributions In Three Dimensions From Tomographic Optical Density Scanning Of Polymer Gels: Ii. Optical Properties Of The Bang Polymer Gel, Yevgeniya Zastavker, Marek Maryanski, John Gore

Yevgeniya V. Zastavker

A newly developed method of radiation dosimetry makes use of the optical properties of polymer gels. The dose-response mechanism relies on the production of light-scattering polymer micro-particles in the gel at each site of radiation absorption. The scattering produces an attenuation of transmitted light intensity that is directly related to the dose and independent of dose rate. For the BANG polymer gel (bis, acrylamide, nitrogen, and gelatin) the shape of the dose-response curve depends on the fraction of the cross-linking monomer in the initial mixture and on the wavelength of light. At 500 nm the attenuation coefficient (μ) increases by …