Open Access. Powered by Scholars. Published by Universities.®

Radiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Radiology

Absolute Quantification Of Tc-99m Activity Distributions Using A Planar Molecular Breast Imaging Commercial System, Benjamin P. Lopez Aug 2022

Absolute Quantification Of Tc-99m Activity Distributions Using A Planar Molecular Breast Imaging Commercial System, Benjamin P. Lopez

Dissertations & Theses (Open Access)

Molecular breast imaging (MBI) uses two dedicated-breast semiconductor detectors to visualize the preferential uptake of technetium-99m-sestamibi (99mTc-sestamibi) by breast cancer cells relative to surrounding benign breast tissues. Clinically, MBI is used primarily as a supplementary tool to standard-of-care mammography because of its improved detection of breast cancers, especially in women with mammographically-dense breasts. Because of a lack of image corrections, MBI applications are currently limited to qualitative evaluations of relative pixel intensities between image regions with suspected lesions and normal tissue.

The objective of this dissertation was to use Monte Carlo simulations to better characterize the MBI imaging …


Development Of Advanced Mr-Guided Adaptive Radiation Therapy Methods For Head & Neck Cancers On The 1.5t Mr-Linac, Brigid Mcdonald Aug 2022

Development Of Advanced Mr-Guided Adaptive Radiation Therapy Methods For Head & Neck Cancers On The 1.5t Mr-Linac, Brigid Mcdonald

Dissertations & Theses (Open Access)

The 1.5T hybrid MRI/linear accelerator (MR-linac) has recently been introduced into clinical practice and used for the treatment of head and neck cancers (HNC). This device enables on-line adaptive radiation therapy (ART) based on anatomical changes throughout treatment and variations in patient position. This novel technology also has the potential for advanced ART strategies such as dose-optimized ART, in which the treatment plan is optimized based on the accumulated dose over previous fractions, or biological image-guided ART, in which the plan is adapted based on individual tumor response as measured through quantitative imaging techniques such as diffusion-weighted imaging (DWI). The …


Hepatocellular Carcinoma Image-Guided Intervention: Quantitative Characterization Of Reagents For Thermochemical Ablation, Emily A. Thompson May 2022

Hepatocellular Carcinoma Image-Guided Intervention: Quantitative Characterization Of Reagents For Thermochemical Ablation, Emily A. Thompson

Dissertations & Theses (Open Access)

Thermochemical ablation (TCA) is a minimally invasive therapy under development for hepatocellular carcinoma, a leading cause of cancer death worldwide. TCA utilizes acid-base chemistry delivered simultaneously to induce local ablation when administered. When delivered via a mixing catheter placed directly into the tumor, acid (e.g., AcOH) and base (e.g., NaOH) react to completion at the catheter tip, producing the acetate salt, water, and releasing heat (Δ>50°C) in sufficient quantities to induce lethal osmotic and thermal stress in tumor cells. However, these two reagents are not distinguishable from tissues with noninvasive imaging modalities, which makes monitoring the delivery of TCA …


Integration Of Biomedical Imaging And Translational Approaches For Management Of Head And Neck Cancer, Abdallah Mohamed, Abdallah Mohamed May 2022

Integration Of Biomedical Imaging And Translational Approaches For Management Of Head And Neck Cancer, Abdallah Mohamed, Abdallah Mohamed

Dissertations & Theses (Open Access)

The aim of the clinical component of this work was to determine whether the currently available clinical imaging tools can be integrated with radiotherapy (RT) platforms for monitoring and adaptation of radiation dose, prediction of tumor response and disease outcomes, and characterization of patterns of failure and normal tissue toxicity in head and neck cancer (HNC) patients with potentially curable tumors. In Aim 1, we showed that the currently available clinical imaging modalities can be successfully used to adapt RT dose based-on dynamic tumor response, predict oncologic disease outcomes, characterize RT-induced toxicity, and identify the patterns of disease failure. We …