Open Access. Powered by Scholars. Published by Universities.®

Pathology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Pathology

A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson Dec 2017

A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized …


Expression Of Mir-15/107 Family Micrornas In Human Tissues And Cultured Rat Brain Cells, Wang-Xia Wang, Robert J. Danaher, Craig S. Miller, Joseph R. Berger, Vega G. Nubia, Bernard R. Wilfred, Janna H. Neltner, Christopher M. Norris, Peter T. Nelson Feb 2014

Expression Of Mir-15/107 Family Micrornas In Human Tissues And Cultured Rat Brain Cells, Wang-Xia Wang, Robert J. Danaher, Craig S. Miller, Joseph R. Berger, Vega G. Nubia, Bernard R. Wilfred, Janna H. Neltner, Christopher M. Norris, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs), sharing a 5' AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression …


Micrornas (Mirnas) In Neurodegenerative Diseases, Peter T. Nelson, Wang-Xia Wang, Bernard W. Rajeev Jan 2008

Micrornas (Mirnas) In Neurodegenerative Diseases, Peter T. Nelson, Wang-Xia Wang, Bernard W. Rajeev

Sanders-Brown Center on Aging Faculty Publications

Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small (~22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of …


Energizing Mirna Research: A Review Of The Role Of Mirnas In Lipid Metabolism, With A Prediction That Mir-103/107 Regulates Human Metabolic Pathways, Bernard R. Wilfred, Wang-Xia Wang, Peter T. Nelson Jul 2007

Energizing Mirna Research: A Review Of The Role Of Mirnas In Lipid Metabolism, With A Prediction That Mir-103/107 Regulates Human Metabolic Pathways, Bernard R. Wilfred, Wang-Xia Wang, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are powerful regulators of gene expression. Although first discovered in worm larvae, miRNAs play fundamental biological roles-including in humans-well beyond development. MiRNAs participate in the regulation of metabolism (including lipid metabolism) for all animal species studied. A review of the fascinating and fast-growing literature on miRNA regulation of metabolism can be parsed into three main categories: (1) adipocyte biochemistry and cell fate determination; (2) regulation of metabolic biochemistry in invertebrates; and (3) regulation of metabolic biochemistry in mammals. Most research into the 'function' of a given miRNA in metabolic pathways has concentrated on a given miRNA acting upon …