Open Access. Powered by Scholars. Published by Universities.®

Pathology Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska Medical Center

Humans

2012

Articles 1 - 2 of 2

Full-Text Articles in Pathology

Low Levels Of Β-Lactam Antibiotics Induce Extracellular Dna Release And Biofilm Formation In Staphylococcus Aureus., Jeffrey B. Kaplan, Era A. Izano, Prerna Gopal, Michael T. Karwacki, Sangho Kim, Jeffrey L. Bose, Kenneth W. Bayles, Alexander R. Horswill Jul 2012

Low Levels Of Β-Lactam Antibiotics Induce Extracellular Dna Release And Biofilm Formation In Staphylococcus Aureus., Jeffrey B. Kaplan, Era A. Izano, Prerna Gopal, Michael T. Karwacki, Sangho Kim, Jeffrey L. Bose, Kenneth W. Bayles, Alexander R. Horswill

Journal Articles: Pathology and Microbiology

UNLABELLED: Subminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation in Staphylococcus aureus, an important human pathogen. Our goal was to measure S. aureus biofilm formation in the presence of low levels of β-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0× to 1× MIC. Biofilm formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube …


Deciphering Mechanisms Of Staphylococcal Biofilm Evasion Of Host Immunity., Mark L. Hanke, Tammy Kielian May 2012

Deciphering Mechanisms Of Staphylococcal Biofilm Evasion Of Host Immunity., Mark L. Hanke, Tammy Kielian

Journal Articles: Pathology and Microbiology

Biofilms are adherent communities of bacteria contained within a complex matrix. Although host immune responses to planktonic staphylococcal species have been relatively well-characterized, less is known regarding immunity to staphylococcal biofilms and how they modulate anti-bacterial effector mechanisms when organized in this protective milieu. Previously, staphylococcal biofilms were thought to escape immune recognition on the basis of their chronic and indolent nature. Instead, we have proposed that staphylococcal biofilms skew the host immune response away from a proinflammatory bactericidal phenotype toward an anti-inflammatory, pro-fibrotic response that favors bacterial persistence. This possibility is supported by recent studies from our laboratory using …