Open Access. Powered by Scholars. Published by Universities.®

Pathology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Pathology

A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson Dec 2017

A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized …


Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer Mar 2015

Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer

Sanders-Brown Center on Aging Faculty Publications

Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the …


Expression Of Mir-15/107 Family Micrornas In Human Tissues And Cultured Rat Brain Cells, Wang-Xia Wang, Robert J. Danaher, Craig S. Miller, Joseph R. Berger, Vega G. Nubia, Bernard R. Wilfred, Janna H. Neltner, Christopher M. Norris, Peter T. Nelson Feb 2014

Expression Of Mir-15/107 Family Micrornas In Human Tissues And Cultured Rat Brain Cells, Wang-Xia Wang, Robert J. Danaher, Craig S. Miller, Joseph R. Berger, Vega G. Nubia, Bernard R. Wilfred, Janna H. Neltner, Christopher M. Norris, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs), sharing a 5' AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression …


Specific Sequence Determinants Of Mir-15/107 Microrna Gene Group Targets, Peter T. Nelson, Wang-Xia Wang, Guogen Mao, Bernard R. Wilfred, Kevin Xie, Mary H. Jennings, Zhen Gao, Xiaowei Wang Oct 2011

Specific Sequence Determinants Of Mir-15/107 Microrna Gene Group Targets, Peter T. Nelson, Wang-Xia Wang, Guogen Mao, Bernard R. Wilfred, Kevin Xie, Mary H. Jennings, Zhen Gao, Xiaowei Wang

Pathology and Laboratory Medicine Faculty Publications

MicroRNAs (miRNAs) target mRNAs in human cells via complex mechanisms that are still incompletely understood. Using anti-Argonaute (anti-AGO) antibody co-immunoprecipitation, followed by microarray analyses and downstream bioinformatics, 'RIP-Chip' experiments enable direct analyses of miRNA targets. RIP-Chip studies (and parallel assessments of total input mRNA) were performed in cultured H4 cells after transfection with miRNAs corresponding to the miR-15/107 gene group (miR-103, miR-107, miR-16 and miR-195), and five control miRNAs. Three biological replicates were run for each condition with a total of 54 separate human Affymetrix Human Gene 1.0 ST array replicates. Computational analyses queried for determinants of miRNA:mRNA binding. The …


Patterns Of Microrna Expression In Normal And Early Alzheimer's Disease Human Temporal Cortex: White Matter Versus Gray Matter, Wang-Xia Wang, Qingwei Huang, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson Feb 2011

Patterns Of Microrna Expression In Normal And Early Alzheimer's Disease Human Temporal Cortex: White Matter Versus Gray Matter, Wang-Xia Wang, Qingwei Huang, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

MicroRNA (miRNA) expression was assessed in human cerebral cortical gray matter (GM) and white matter (WM) in order to provide the first insights into the difference between GM and WM miRNA repertoires across a range of Alzheimer's disease (AD) pathology. RNA was isolated separately from GM and WM portions of superior and middle temporal cerebral cortex (N = 10 elderly females, postmortem interval < 4 h). miRNA profiling experiments were performed using state-of-the-art Exiqon© LNA-microarrays. A subset of miRNAs that appeared to be strongly expressed according to the microarrays did not appear to be conventional miRNAs according to Northern blot analyses. Some well-characterized miRNAs were substantially enriched in WM …


Dysregulation Of The Mitogen Granulin In Human Cancer Through The Mir-15/107 Microrna Gene Group, Wang-Xia Wang, Natasha Kyprianou, Xiaowei Wang, Peter T. Nelson Nov 2010

Dysregulation Of The Mitogen Granulin In Human Cancer Through The Mir-15/107 Microrna Gene Group, Wang-Xia Wang, Natasha Kyprianou, Xiaowei Wang, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

Granulin (GRN) is a potent mitogen and growth factor implicated in many human cancers, but its regulation is poorly understood. Recent findings indicate that GRN is regulated strongly by the microRNA miR-107, which functionally overlaps with miR-15, miR-16, and miR-195 due to a common 5′ sequence critical for target specificity. In this study, we queried whether miR-107 and paralogs regulated GRN in human cancers. In cultured cells, anti-argonaute RNA coimmunoprecipitation with downstream microarray analyses indicates that GRN mRNA is directly targeted by numerous miR-15/107 miRNAs. We further tested this association in human tumors. MiR-15 and miR-16 are known to be …


The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson Sep 2010

The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played …


High-Throughput Experimental Studies To Identify Mirna Targets Directly, With Special Focus On The Mammalian Brain, Peter T. Nelson, Marianthi Kiriakidou, Zissimos Mourelatos, Grace S. Tan, Mary H. Jennings, Kevin Xie, Wang-Xia Wang Jun 2010

High-Throughput Experimental Studies To Identify Mirna Targets Directly, With Special Focus On The Mammalian Brain, Peter T. Nelson, Marianthi Kiriakidou, Zissimos Mourelatos, Grace S. Tan, Mary H. Jennings, Kevin Xie, Wang-Xia Wang

Pathology and Laboratory Medicine Faculty Publications

We review the pertinent literature on methods used in high-throughput experimental identification of microRNA (miRNA) "targets" with emphasis on neurochemical studies. miRNAs are short regulatory noncoding RNAs that play important roles in the mammalian brain. The functions of miRNAs are related to their binding of RNAs including mRNAs. Since mammalian miRNAs tend to bind to target mRNAs via imperfect complementarity, understanding exactly which target mRNAs are recognized by which specific miRNAs is a challenge. Based on early experimental evidence, a set of "binding rules" for miRNAs has been described. These have focused on the 5' "seed" region of miRNAs binding …


Individual Micrornas (Mirnas) Display Distinct Mrna Targeting "Rules", Wang-Xia Wang, Bernard R. Wilfred, Kevin Xie, Mary H. Jennings, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson May 2010

Individual Micrornas (Mirnas) Display Distinct Mrna Targeting "Rules", Wang-Xia Wang, Bernard R. Wilfred, Kevin Xie, Mary H. Jennings, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

MicroRNAs (miRNAs) guide Argonaute (AGO)-containing microribonucleoprotein (miRNP) complexes to target mRNAs.It has been assumed that miRNAs behave similarly to each other with regard to mRNA target recognition. The usual assumptions, which are based on prior studies, are that miRNAs target preferentially sequences in the 3'UTR of mRNAs,guided by the 5' "seed" portion of the miRNAs. Here we isolated AGO- and miRNA-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with anti-AGO antibody. Cells were transfected with miR-107, miR-124,miR-128, miR-320, or a negative control miRNA. Co-IPed RNAs were subjected to downstream high-density Affymetrix Human Gene 1.0 ST microarray analyses using …


Anti-Argonaute Rip-Chip Shows That Mirna Transfections Alter Global Patterns Of Mrna Recruitment To Microribonucleoprotein Complexes, Wang-Xia Wang, Bernard R. Wilfred, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson Feb 2010

Anti-Argonaute Rip-Chip Shows That Mirna Transfections Alter Global Patterns Of Mrna Recruitment To Microribonucleoprotein Complexes, Wang-Xia Wang, Bernard R. Wilfred, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

MicroRNAs (miRNAs) play key roles in gene expression regulation by guiding Argonaute (AGO)-containing microribonucleoprotein (miRNP) effector complexes to target polynucleotides. There are still uncertainties about how miRNAs interact with mRNAs. Here we employed a biochemical approach to isolate AGO-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with a previously described anti-AGO antibody. Co-immunoprecipitated (co-IPed) RNAs were subjected to downstream Affymetrix Human Gene 1.0 ST microarray analysis. During rigorous validation, the "RIP-Chip" assay identified target mRNAs specifically associated with AGO complexes. RIP-Chip was performed after transfecting brain-enriched miRNAs (miR-107, miR-124, miR-128, and miR-320) and nonphysiologic control miRNA to identify …


Mir-107 Is Reduced In Alzheimer's Disease Brain Neocortex: Validation Study, Peter T. Nelson, Wang-Xia Wang Jan 2010

Mir-107 Is Reduced In Alzheimer's Disease Brain Neocortex: Validation Study, Peter T. Nelson, Wang-Xia Wang

Pathology and Laboratory Medicine Faculty Publications

MiR-107 is a microRNA (miRNA) that we reported previously to have decreased expression in the temporal cortical gray matter early in the progression of Alzheimer's disease (AD). Here we study a new group of well-characterized human temporal cortex samples (N=19). MiR-107 expression was assessed, normalized to miR-124 and let-7a. Correlation was observed between decreased miR-107 expression and increased neuritic plaque counts (P< 0.05) and neurofibrillary tangle counts (P< 0.02) in adjacent brain tissue. Adjusted miR-107 and BACE1 mRNA levels tended to correlate negatively (trend with regression P< 0.07). In sum, miR-107 expression tends to be lower relative to other miRNAs as AD progresses.


Focus On Rna Isolation: Obtaining Rna For Microrna (Mirna) Expression Profiling Analyses Of Neural Tissue, Wang-Xia Wang, Bernard R. Wilfred, Donald A. Baldwin, R. Benjamin Isett, Na Ren, Arnold J. Stromberg, Peter T. Nelson Nov 2008

Focus On Rna Isolation: Obtaining Rna For Microrna (Mirna) Expression Profiling Analyses Of Neural Tissue, Wang-Xia Wang, Bernard R. Wilfred, Donald A. Baldwin, R. Benjamin Isett, Na Ren, Arnold J. Stromberg, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of 'upstream' variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional …


Technical Variables In High-Throughput Mirna Expression Profiling: Much Work Remains To Be Done, Peter T. Nelson, Wang-Xia Wang, Bernard R. Wilfred, Guiliang Tang Nov 2008

Technical Variables In High-Throughput Mirna Expression Profiling: Much Work Remains To Be Done, Peter T. Nelson, Wang-Xia Wang, Bernard R. Wilfred, Guiliang Tang

Pathology and Laboratory Medicine Faculty Publications

MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include …


The Expression Of Microrna Mir-107 Decreases Early In Alzheimer's Disease And May Accelerate Disease Progression Through Regulation Of Β-Site Amyloid Precursor Protein-Cleaving Enzyme 1, Wang-Xia Wang, Bernard W. Rajeev, Arnold J. Stromberg, Na Ren, Guiliang Tang, Qingwei Huang, Isidore Rigoutsos, Peter T. Nelson Jan 2008

The Expression Of Microrna Mir-107 Decreases Early In Alzheimer's Disease And May Accelerate Disease Progression Through Regulation Of Β-Site Amyloid Precursor Protein-Cleaving Enzyme 1, Wang-Xia Wang, Bernard W. Rajeev, Arnold J. Stromberg, Na Ren, Guiliang Tang, Qingwei Huang, Isidore Rigoutsos, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are small regulatory RNAs that participate in posttranscriptional gene regulation in a sequence-specific manner. However, little is understood about the role(s) of miRNAs in Alzheimer's disease (AD). We used miRNA expression microarrays on RNA extracted from human brain tissue from the University of Kentucky Alzheimer's Disease Center Brain Bank with near-optimal clinicopathological correlation. Cases were separated into four groups: elderly nondemented with negligible AD-type pathology, nondemented with incipient AD pathology, mild cognitive impairment (MCI) with moderate AD pathology, and AD. Among the AD-related miRNA expression changes, miR-107 was exceptional because miR-107 levels decreased significantly even in patients with …


Micrornas (Mirnas) In Neurodegenerative Diseases, Peter T. Nelson, Wang-Xia Wang, Bernard W. Rajeev Jan 2008

Micrornas (Mirnas) In Neurodegenerative Diseases, Peter T. Nelson, Wang-Xia Wang, Bernard W. Rajeev

Sanders-Brown Center on Aging Faculty Publications

Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small (~22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of …


Energizing Mirna Research: A Review Of The Role Of Mirnas In Lipid Metabolism, With A Prediction That Mir-103/107 Regulates Human Metabolic Pathways, Bernard R. Wilfred, Wang-Xia Wang, Peter T. Nelson Jul 2007

Energizing Mirna Research: A Review Of The Role Of Mirnas In Lipid Metabolism, With A Prediction That Mir-103/107 Regulates Human Metabolic Pathways, Bernard R. Wilfred, Wang-Xia Wang, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are powerful regulators of gene expression. Although first discovered in worm larvae, miRNAs play fundamental biological roles-including in humans-well beyond development. MiRNAs participate in the regulation of metabolism (including lipid metabolism) for all animal species studied. A review of the fascinating and fast-growing literature on miRNA regulation of metabolism can be parsed into three main categories: (1) adipocyte biochemistry and cell fate determination; (2) regulation of metabolic biochemistry in invertebrates; and (3) regulation of metabolic biochemistry in mammals. Most research into the 'function' of a given miRNA in metabolic pathways has concentrated on a given miRNA acting upon …