Open Access. Powered by Scholars. Published by Universities.®

Pathology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Pathology

Space-Occupying Brain Lesions, Trauma-Related Tau Astrogliopathy, And Artag: A Report Of Two Cases And A Literature Review, Adam D. Bachstetter, Filip G. Garrett, Gregory A. Jicha, Peter T. Nelson Mar 2021

Space-Occupying Brain Lesions, Trauma-Related Tau Astrogliopathy, And Artag: A Report Of Two Cases And A Literature Review, Adam D. Bachstetter, Filip G. Garrett, Gregory A. Jicha, Peter T. Nelson

Spinal Cord and Brain Injury Research Center Faculty Publications

Astrocytes with intracellular accumulations of misfolded phosphorylated tau protein have been observed in advanced-stage chronic traumatic encephalopathy (CTE) and in other neurodegenerative conditions. There is a growing awareness that astrocytic tau inclusions are also relatively common in the brains of persons over 70 years of age-affecting approximately one-third of autopsied individuals. The pathologic hallmarks of aging-related tau astrogliopathy (ARTAG) include phosphorylated tau protein within thorn-shaped astrocytes (TSA) in subpial, subependymal, perivascular, and white matter regions, whereas granular-fuzzy astrocytes are often seen in gray matter. CTE and ARTAG share molecular and histopathologic characteristics, suggesting that trauma-related mechanism(s) may predispose to the …


Temporal Changes In Inflammatory Mitochondria-Enriched Micrornas Following Traumatic Brain Injury And Effects Of Mir-146a Nanoparticle Delivery, Wang-Xia Wang, Pareshkumar Prajapati, Hemendra J. Vekaria, Malinda Spry, Amber L. Cloud, Patrick G. Sullivan, Joe E. Springer Mar 2021

Temporal Changes In Inflammatory Mitochondria-Enriched Micrornas Following Traumatic Brain Injury And Effects Of Mir-146a Nanoparticle Delivery, Wang-Xia Wang, Pareshkumar Prajapati, Hemendra J. Vekaria, Malinda Spry, Amber L. Cloud, Patrick G. Sullivan, Joe E. Springer

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate post-transcriptional gene expression and contribute to all aspects of cellular function. We previously reported that the activities of several mitochondria-enriched miRNAs regulating inflammation (i.e., miR-142-3p, miR-142-5p, and miR-146a) are altered in the hippocampus at 3–12 hours following a severe traumatic brain injury. In the present study, we investigated the temporal expression profile of these inflammatory miRNAs in mitochondria and cytosol fractions at more chronic post-injury times following severe controlled cortical impact injury in rats. In addition, several inflammatory genes were analyzed in the cytosol fractions. The analysis showed that while elevated …


Dystrophic Microglia Are Associated With Neurodegenerative Disease And Not Healthy Aging In The Human Brain, Ryan K. Shahidehpour, Rebecca E. Higdon, Nicole G. Crawford, Janna H. Neltner, Eseosa T. Ighodaro, Ela Patel, Douglas Price, Peter T. Nelson, Adam D. Bachstetter Jan 2021

Dystrophic Microglia Are Associated With Neurodegenerative Disease And Not Healthy Aging In The Human Brain, Ryan K. Shahidehpour, Rebecca E. Higdon, Nicole G. Crawford, Janna H. Neltner, Eseosa T. Ighodaro, Ela Patel, Douglas Price, Peter T. Nelson, Adam D. Bachstetter

Spinal Cord and Brain Injury Research Center Faculty Publications

Loss of physiological microglial function may increase the propagation of neurodegenerative diseases. Cellular senescence is a hallmark of aging; thus, we hypothesized age could be a cause of dystrophic microglia. Stereological counts were performed for total microglia, 2 microglia morphologies (hypertrophic and dystrophic) across the human lifespan. An age-associated increase in the number of dystrophic microglia was found in the hippocampus and frontal cortex. However, the increase in dystrophic microglia was proportional to the age-related increase in the total number of microglia. Thus, aging alone does not explain the presence of dystrophic microglia. We next tested if dystrophic microglia could …


Distribution Of Microglial Phenotypes As A Function Of Age And Alzheimer's Disease Neuropathology In The Brains Of People With Down Syndrome, Alessandra C. Martini, Alex M. Helman, Katie L. Mccarty, Ira T. Lott, Eric Doran, Frederick A. Schmitt, Elizabeth Head Oct 2020

Distribution Of Microglial Phenotypes As A Function Of Age And Alzheimer's Disease Neuropathology In The Brains Of People With Down Syndrome, Alessandra C. Martini, Alex M. Helman, Katie L. Mccarty, Ira T. Lott, Eric Doran, Frederick A. Schmitt, Elizabeth Head

Sanders-Brown Center on Aging Faculty Publications

Introduction: Microglial cells play an important role in the development of Alzheimer's disease (AD). People with Down syndrome (DS) inevitably develop AD neuropathology (DSAD) by 40 years of age. We characterized the distribution of different microglial phenotypes in the brains of people with DS and DSAD.

Methods: Autopsy tissue from the posterior cingulate cortex (PCC) from people with DS, DSAD, and neurotypical controls was immunostained with the microglial marker Iba1 to assess five microglia morphological types.

Results: Individuals with DS have more hypertrophic microglial cells in their white matter. In the gray matter, individuals with DSAD had significantly fewer ramified …


Brain Structure Changes Over Time In Normal And Mildly Impaired Aged Persons, Charles D. Smith, Linda J. Van Eldik, Gregory A. Jicha, Frederick A. Schmitt, Peter T. Nelson, Erin L. Abner, Richard J. Kryscio, Richard R. Murphy, Anders H. Andersen May 2020

Brain Structure Changes Over Time In Normal And Mildly Impaired Aged Persons, Charles D. Smith, Linda J. Van Eldik, Gregory A. Jicha, Frederick A. Schmitt, Peter T. Nelson, Erin L. Abner, Richard J. Kryscio, Richard R. Murphy, Anders H. Andersen

Neurology Faculty Publications

Structural brain changes in aging are known to occur even in the absence of dementia, but the magnitudes and regions involved vary between studies. To further characterize these changes, we analyzed paired MRI images acquired with identical protocols and scanner over a median 5.8-year interval. The normal study group comprised 78 elders (25M 53F, baseline age range 70-78 years) who underwent an annual standardized expert assessment of cognition and health and who maintained normal cognition for the duration of the study. We found a longitudinal grey matter (GM) loss rate of 2.56 ± 0.07 ml/year (0.20 ± 0.04%/year) and a …


Down Syndrome, Beta-Amyloid And Neuroimaging, Elizabeth Head, Alex M. Helman, David K. Powell, Frederick A. Schmitt Jan 2018

Down Syndrome, Beta-Amyloid And Neuroimaging, Elizabeth Head, Alex M. Helman, David K. Powell, Frederick A. Schmitt

Sanders-Brown Center on Aging Faculty Publications

This review focuses on the role of Aβ in AD pathogenesis in Down syndrome and current approaches for imaging Aβ in vivo. We will describe how Aβ deposits with age, the posttranslational modifications that can occur, and detection in biofluids. Three unique case studies describing partial trisomy 21 cases without APP triplication, and the occurrences of low level mosaic trisomy 21 in an early onset AD patient are presented. Brain imaging for Aβ includes those by positron emission tomography and ligands (Pittsburgh Compound B, Florbetapir, and FDDNP) that bind Aβ have been published and are summarized here. In combination, we …


A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson Dec 2017

A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized …


Cerebrovascular Pathology In Down Syndrome And Alzheimer Disease, Elizabeth Head, Michael J. Phelan, Eric Doran, Ronald C. Kim, Wayne W. Poon, Frederick A. Schmitt, Ira T. Lott Dec 2017

Cerebrovascular Pathology In Down Syndrome And Alzheimer Disease, Elizabeth Head, Michael J. Phelan, Eric Doran, Ronald C. Kim, Wayne W. Poon, Frederick A. Schmitt, Ira T. Lott

Sanders-Brown Center on Aging Faculty Publications

People with Down syndrome (DS) are at high risk for developing Alzheimer disease (AD) with age. Typically, by age 40 years, most people with DS have sufficient neuropathology for an AD diagnosis. Interestingly, atherosclerosis and hypertension are atypical in DS with age, suggesting the lack of these vascular risk factors may be associated with reduced cerebrovascular pathology. However, because the extra copy of APP leads to increased beta-amyloid peptide (Aβ) accumulation in DS, we hypothesized that there would be more extensive and widespread cerebral amyloid angiopathy (CAA) with age in DS relative to sporadic AD. To test this hypothesis CAA, …


Hne-Modified Proteins In Down Syndrome: Involvement In Development Of Alzheimer Disease Neuropathology, Eugenio Barone, Elizabeth Head, D. Allan Butterfield, Marzia Perluigi Oct 2017

Hne-Modified Proteins In Down Syndrome: Involvement In Development Of Alzheimer Disease Neuropathology, Eugenio Barone, Elizabeth Head, D. Allan Butterfield, Marzia Perluigi

Sanders-Brown Center on Aging Faculty Publications

Down syndrome (DS), trisomy of chromosome 21, is the most common genetic form of intellectual disability. The neuropathology of DS involves multiple molecular mechanisms, similar to AD, including the deposition of beta-amyloid (Aβ) into senile plaques and tau hyperphosphorylating in neurofibrillary tangles. Interestingly, many genes encoded by chromosome 21, in addition to being primarily linked to amyloid-beta peptide (Aβ) pathology, are responsible for increased oxidative stress (OS) conditions that also result as a consequence of reduced antioxidant system efficiency. However, redox homeostasis is disturbed by overproduction of Aβ, which accumulates into plaques across the lifespan in DS as well as …


Outcomes After Diagnosis Of Mild Cognitive Impairment In A Large Autopsy Series, Erin L. Abner, Richard J. Kryscio, Frederick A. Schmitt, David W. Fardo, Daniela C. Moga, Eseosa T. Ighodaro, Gregory A. Jicha, Lei Yu, Hiroko H. Dodge, Chengjie Xiong, Randall L. Woltjer, Julie A. Schneider, Nigel J. Cairns, David A. Bennett, Peter T. Nelson Apr 2017

Outcomes After Diagnosis Of Mild Cognitive Impairment In A Large Autopsy Series, Erin L. Abner, Richard J. Kryscio, Frederick A. Schmitt, David W. Fardo, Daniela C. Moga, Eseosa T. Ighodaro, Gregory A. Jicha, Lei Yu, Hiroko H. Dodge, Chengjie Xiong, Randall L. Woltjer, Julie A. Schneider, Nigel J. Cairns, David A. Bennett, Peter T. Nelson

Epidemiology and Environmental Health Faculty Publications

OBJECTIVE: To determine clinical and neuropathological outcomes following a clinical diagnosis of mild cognitive impairment (MCI).

METHODS: Data were drawn from a large autopsy series (N = 1,337) of individuals followed longitudinally from normal or MCI status to death, derived from 4 Alzheimer Disease (AD) Centers in the United States.

RESULTS: Mean follow‐up was 7.9 years. Of the 874 individuals ever diagnosed with MCI, final clinical diagnoses were varied: 39.2% died with an MCI diagnosis, 46.8% with a dementia diagnosis, and 13.9% with a diagnosis of intact cognition. The latter group had pathological features resembling those with a final clinical …


Mir-27a And Mir-27b Regulate Autophagic Clearance Of Damaged Mitochondria By Targeting Pten-Induced Putative Kinase 1 (Pink1), Jaekwang Kim, Fabienne C. Fiesel, Krystal C. Belmonte, Roman Hudec, Wang-Xia Wang, Chaeyoung Kim, Peter T. Nelson, Wolfdieter Springer, Jungsu Kim Jul 2016

Mir-27a And Mir-27b Regulate Autophagic Clearance Of Damaged Mitochondria By Targeting Pten-Induced Putative Kinase 1 (Pink1), Jaekwang Kim, Fabienne C. Fiesel, Krystal C. Belmonte, Roman Hudec, Wang-Xia Wang, Chaeyoung Kim, Peter T. Nelson, Wolfdieter Springer, Jungsu Kim

Pathology and Laboratory Medicine Faculty Publications

Background: Loss-of-function mutations in PINK1 and PARKIN are the most common causes of autosomal recessive Parkinson’s disease (PD). PINK1 is a mitochondrial serine/threonine kinase that plays a critical role in mitophagy, a selective autophagic clearance of damaged mitochondria. Accumulating evidence suggests mitochondrial dysfunction is one of central mechanisms underlying PD pathogenesis. Therefore, identifying regulatory mechanisms of PINK1 expression may provide novel therapeutic opportunities for PD. Although post-translational stabilization of PINK1 upon mitochondrial damage has been extensively studied, little is known about the regulation mechanism of PINK1 at the transcriptional or translational levels.

Results: Here, we demonstrated that microRNA-27a (miR-27a) and …


Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer Mar 2015

Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer

Sanders-Brown Center on Aging Faculty Publications

Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the …


Abcc9 Gene Polymorphism Is Associated With Hippocampal Sclerosis Of Aging Pathology, Peter T. Nelson, Steven Estus, Erin L. Abner, Ishita Parikh, Manasi Malik, Janna H. Neltner, Eseosa Ighodaro, Wang-Xia Wang, Bernard R. Wilfred, Li-San Wang, Walter A. Kukull, Kannabiran Nandakumar, Mark L. Farman, Wayne W. Poon, Maria M. Corrada, Claudia H. Kawas, David H. Cribbs, David A. Bennett, Julie A. Schneider, Eric B. Larson, Paul K. Crane, Otto Valladares, Frederick A. Schmitt, Richard J. Kryscio, Gregory A. Jicha, Charles D. Smith, Stephen W. Scheff, Joshua A. Sonnen, Jonathan L. Haines, Margaret A. Pericak-Vance, Richard Mayeux, Lindsay A. Farrer, Linda J. Van Eldik, Craig Horbinski, Robert C. Green, Marla Gearing, Leonard W. Poon, Patricia L. Kramer, Randall L. Woltjer, Thomas J. Montine, Amanda B. Partch, Alexander J. Rajic, Katierose Richmire, Sarah E. Monsell, Gerard D. Schellenberg, David W. Fardo Jun 2014

Abcc9 Gene Polymorphism Is Associated With Hippocampal Sclerosis Of Aging Pathology, Peter T. Nelson, Steven Estus, Erin L. Abner, Ishita Parikh, Manasi Malik, Janna H. Neltner, Eseosa Ighodaro, Wang-Xia Wang, Bernard R. Wilfred, Li-San Wang, Walter A. Kukull, Kannabiran Nandakumar, Mark L. Farman, Wayne W. Poon, Maria M. Corrada, Claudia H. Kawas, David H. Cribbs, David A. Bennett, Julie A. Schneider, Eric B. Larson, Paul K. Crane, Otto Valladares, Frederick A. Schmitt, Richard J. Kryscio, Gregory A. Jicha, Charles D. Smith, Stephen W. Scheff, Joshua A. Sonnen, Jonathan L. Haines, Margaret A. Pericak-Vance, Richard Mayeux, Lindsay A. Farrer, Linda J. Van Eldik, Craig Horbinski, Robert C. Green, Marla Gearing, Leonard W. Poon, Patricia L. Kramer, Randall L. Woltjer, Thomas J. Montine, Amanda B. Partch, Alexander J. Rajic, Katierose Richmire, Sarah E. Monsell, Gerard D. Schellenberg, David W. Fardo

Pathology and Laboratory Medicine Faculty Publications

Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer's Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer's Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer's Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically …


Patterns Of Microrna Expression In Normal And Early Alzheimer's Disease Human Temporal Cortex: White Matter Versus Gray Matter, Wang-Xia Wang, Qingwei Huang, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson Feb 2011

Patterns Of Microrna Expression In Normal And Early Alzheimer's Disease Human Temporal Cortex: White Matter Versus Gray Matter, Wang-Xia Wang, Qingwei Huang, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

MicroRNA (miRNA) expression was assessed in human cerebral cortical gray matter (GM) and white matter (WM) in order to provide the first insights into the difference between GM and WM miRNA repertoires across a range of Alzheimer's disease (AD) pathology. RNA was isolated separately from GM and WM portions of superior and middle temporal cerebral cortex (N = 10 elderly females, postmortem interval < 4 h). miRNA profiling experiments were performed using state-of-the-art Exiqon© LNA-microarrays. A subset of miRNAs that appeared to be strongly expressed according to the microarrays did not appear to be conventional miRNAs according to Northern blot analyses. Some well-characterized miRNAs were substantially enriched in WM …


Dysregulation Of The Mitogen Granulin In Human Cancer Through The Mir-15/107 Microrna Gene Group, Wang-Xia Wang, Natasha Kyprianou, Xiaowei Wang, Peter T. Nelson Nov 2010

Dysregulation Of The Mitogen Granulin In Human Cancer Through The Mir-15/107 Microrna Gene Group, Wang-Xia Wang, Natasha Kyprianou, Xiaowei Wang, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

Granulin (GRN) is a potent mitogen and growth factor implicated in many human cancers, but its regulation is poorly understood. Recent findings indicate that GRN is regulated strongly by the microRNA miR-107, which functionally overlaps with miR-15, miR-16, and miR-195 due to a common 5′ sequence critical for target specificity. In this study, we queried whether miR-107 and paralogs regulated GRN in human cancers. In cultured cells, anti-argonaute RNA coimmunoprecipitation with downstream microarray analyses indicates that GRN mRNA is directly targeted by numerous miR-15/107 miRNAs. We further tested this association in human tumors. MiR-15 and miR-16 are known to be …


The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson Sep 2010

The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played …


High-Throughput Experimental Studies To Identify Mirna Targets Directly, With Special Focus On The Mammalian Brain, Peter T. Nelson, Marianthi Kiriakidou, Zissimos Mourelatos, Grace S. Tan, Mary H. Jennings, Kevin Xie, Wang-Xia Wang Jun 2010

High-Throughput Experimental Studies To Identify Mirna Targets Directly, With Special Focus On The Mammalian Brain, Peter T. Nelson, Marianthi Kiriakidou, Zissimos Mourelatos, Grace S. Tan, Mary H. Jennings, Kevin Xie, Wang-Xia Wang

Pathology and Laboratory Medicine Faculty Publications

We review the pertinent literature on methods used in high-throughput experimental identification of microRNA (miRNA) "targets" with emphasis on neurochemical studies. miRNAs are short regulatory noncoding RNAs that play important roles in the mammalian brain. The functions of miRNAs are related to their binding of RNAs including mRNAs. Since mammalian miRNAs tend to bind to target mRNAs via imperfect complementarity, understanding exactly which target mRNAs are recognized by which specific miRNAs is a challenge. Based on early experimental evidence, a set of "binding rules" for miRNAs has been described. These have focused on the 5' "seed" region of miRNAs binding …


Individual Micrornas (Mirnas) Display Distinct Mrna Targeting "Rules", Wang-Xia Wang, Bernard R. Wilfred, Kevin Xie, Mary H. Jennings, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson May 2010

Individual Micrornas (Mirnas) Display Distinct Mrna Targeting "Rules", Wang-Xia Wang, Bernard R. Wilfred, Kevin Xie, Mary H. Jennings, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

MicroRNAs (miRNAs) guide Argonaute (AGO)-containing microribonucleoprotein (miRNP) complexes to target mRNAs.It has been assumed that miRNAs behave similarly to each other with regard to mRNA target recognition. The usual assumptions, which are based on prior studies, are that miRNAs target preferentially sequences in the 3'UTR of mRNAs,guided by the 5' "seed" portion of the miRNAs. Here we isolated AGO- and miRNA-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with anti-AGO antibody. Cells were transfected with miR-107, miR-124,miR-128, miR-320, or a negative control miRNA. Co-IPed RNAs were subjected to downstream high-density Affymetrix Human Gene 1.0 ST microarray analyses using …


Anti-Argonaute Rip-Chip Shows That Mirna Transfections Alter Global Patterns Of Mrna Recruitment To Microribonucleoprotein Complexes, Wang-Xia Wang, Bernard R. Wilfred, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson Feb 2010

Anti-Argonaute Rip-Chip Shows That Mirna Transfections Alter Global Patterns Of Mrna Recruitment To Microribonucleoprotein Complexes, Wang-Xia Wang, Bernard R. Wilfred, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

MicroRNAs (miRNAs) play key roles in gene expression regulation by guiding Argonaute (AGO)-containing microribonucleoprotein (miRNP) effector complexes to target polynucleotides. There are still uncertainties about how miRNAs interact with mRNAs. Here we employed a biochemical approach to isolate AGO-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with a previously described anti-AGO antibody. Co-immunoprecipitated (co-IPed) RNAs were subjected to downstream Affymetrix Human Gene 1.0 ST microarray analysis. During rigorous validation, the "RIP-Chip" assay identified target mRNAs specifically associated with AGO complexes. RIP-Chip was performed after transfecting brain-enriched miRNAs (miR-107, miR-124, miR-128, and miR-320) and nonphysiologic control miRNA to identify …


Mir-107 Is Reduced In Alzheimer's Disease Brain Neocortex: Validation Study, Peter T. Nelson, Wang-Xia Wang Jan 2010

Mir-107 Is Reduced In Alzheimer's Disease Brain Neocortex: Validation Study, Peter T. Nelson, Wang-Xia Wang

Pathology and Laboratory Medicine Faculty Publications

MiR-107 is a microRNA (miRNA) that we reported previously to have decreased expression in the temporal cortical gray matter early in the progression of Alzheimer's disease (AD). Here we study a new group of well-characterized human temporal cortex samples (N=19). MiR-107 expression was assessed, normalized to miR-124 and let-7a. Correlation was observed between decreased miR-107 expression and increased neuritic plaque counts (P< 0.05) and neurofibrillary tangle counts (P< 0.02) in adjacent brain tissue. Adjusted miR-107 and BACE1 mRNA levels tended to correlate negatively (trend with regression P< 0.07). In sum, miR-107 expression tends to be lower relative to other miRNAs as AD progresses.


Focus On Rna Isolation: Obtaining Rna For Microrna (Mirna) Expression Profiling Analyses Of Neural Tissue, Wang-Xia Wang, Bernard R. Wilfred, Donald A. Baldwin, R. Benjamin Isett, Na Ren, Arnold J. Stromberg, Peter T. Nelson Nov 2008

Focus On Rna Isolation: Obtaining Rna For Microrna (Mirna) Expression Profiling Analyses Of Neural Tissue, Wang-Xia Wang, Bernard R. Wilfred, Donald A. Baldwin, R. Benjamin Isett, Na Ren, Arnold J. Stromberg, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of 'upstream' variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional …


Technical Variables In High-Throughput Mirna Expression Profiling: Much Work Remains To Be Done, Peter T. Nelson, Wang-Xia Wang, Bernard R. Wilfred, Guiliang Tang Nov 2008

Technical Variables In High-Throughput Mirna Expression Profiling: Much Work Remains To Be Done, Peter T. Nelson, Wang-Xia Wang, Bernard R. Wilfred, Guiliang Tang

Pathology and Laboratory Medicine Faculty Publications

MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include …


The Expression Of Microrna Mir-107 Decreases Early In Alzheimer's Disease And May Accelerate Disease Progression Through Regulation Of Β-Site Amyloid Precursor Protein-Cleaving Enzyme 1, Wang-Xia Wang, Bernard W. Rajeev, Arnold J. Stromberg, Na Ren, Guiliang Tang, Qingwei Huang, Isidore Rigoutsos, Peter T. Nelson Jan 2008

The Expression Of Microrna Mir-107 Decreases Early In Alzheimer's Disease And May Accelerate Disease Progression Through Regulation Of Β-Site Amyloid Precursor Protein-Cleaving Enzyme 1, Wang-Xia Wang, Bernard W. Rajeev, Arnold J. Stromberg, Na Ren, Guiliang Tang, Qingwei Huang, Isidore Rigoutsos, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are small regulatory RNAs that participate in posttranscriptional gene regulation in a sequence-specific manner. However, little is understood about the role(s) of miRNAs in Alzheimer's disease (AD). We used miRNA expression microarrays on RNA extracted from human brain tissue from the University of Kentucky Alzheimer's Disease Center Brain Bank with near-optimal clinicopathological correlation. Cases were separated into four groups: elderly nondemented with negligible AD-type pathology, nondemented with incipient AD pathology, mild cognitive impairment (MCI) with moderate AD pathology, and AD. Among the AD-related miRNA expression changes, miR-107 was exceptional because miR-107 levels decreased significantly even in patients with …


Micrornas (Mirnas) In Neurodegenerative Diseases, Peter T. Nelson, Wang-Xia Wang, Bernard W. Rajeev Jan 2008

Micrornas (Mirnas) In Neurodegenerative Diseases, Peter T. Nelson, Wang-Xia Wang, Bernard W. Rajeev

Sanders-Brown Center on Aging Faculty Publications

Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small (~22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of …


Energizing Mirna Research: A Review Of The Role Of Mirnas In Lipid Metabolism, With A Prediction That Mir-103/107 Regulates Human Metabolic Pathways, Bernard R. Wilfred, Wang-Xia Wang, Peter T. Nelson Jul 2007

Energizing Mirna Research: A Review Of The Role Of Mirnas In Lipid Metabolism, With A Prediction That Mir-103/107 Regulates Human Metabolic Pathways, Bernard R. Wilfred, Wang-Xia Wang, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are powerful regulators of gene expression. Although first discovered in worm larvae, miRNAs play fundamental biological roles-including in humans-well beyond development. MiRNAs participate in the regulation of metabolism (including lipid metabolism) for all animal species studied. A review of the fascinating and fast-growing literature on miRNA regulation of metabolism can be parsed into three main categories: (1) adipocyte biochemistry and cell fate determination; (2) regulation of metabolic biochemistry in invertebrates; and (3) regulation of metabolic biochemistry in mammals. Most research into the 'function' of a given miRNA in metabolic pathways has concentrated on a given miRNA acting upon …