Open Access. Powered by Scholars. Published by Universities.®

Oncology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Oncology

Editorial: Pulsed Electric Field Based Technologies For Oncology Applications, Siqi Guo, Gregor Sersa, Richard Heller Jan 2023

Editorial: Pulsed Electric Field Based Technologies For Oncology Applications, Siqi Guo, Gregor Sersa, Richard Heller

Bioelectrics Publications

No abstract provided.


Impedance Analysis Of Tissues In Nspef Treatment For Cancer Therapy, Edwin Ayobami Oshin Apr 2020

Impedance Analysis Of Tissues In Nspef Treatment For Cancer Therapy, Edwin Ayobami Oshin

Biomedical Engineering Theses & Dissertations

Nanosecond pulsed electric field (nsPEF) for cancer therapy is characterized by applications of high voltage pulses with low pulsed energy to induce non-thermal effects on tissues such as tumor ablation. It nonthermally treats tissues via electroporation. Electroporation is the increase in permeabilization of a cell membrane due to the application of high pulsed electric field. The objective of this study was to investigate the effect of nsPEF on tissue by monitoring the tissue’s impedance in real-time. Potato slices (both untreated and electroporated), and tumors extracted from female BALBc mice were studied. 100ns, 1-10kV pulses were applied to the tissues using …


Moderate Heat Application Enhances The Efficacy Of Nanosecond Pulse Stimulation For The Treatment Of Squamous Cell Carcinoma, Chelsea M. Edelblute, Sigi Guo, Embo Yang, Chunqi Jiang, Karl Schoenbach, Richard Heller Sep 2018

Moderate Heat Application Enhances The Efficacy Of Nanosecond Pulse Stimulation For The Treatment Of Squamous Cell Carcinoma, Chelsea M. Edelblute, Sigi Guo, Embo Yang, Chunqi Jiang, Karl Schoenbach, Richard Heller

Bioelectrics Publications

Nanosecond pulse stimulation as a tumor ablation therapy has been studied for the treatment of various carcinomas in animal models and has shown a significant survival benefit. In the current study, we found that moderate heating at 43°C for 2 minutes significantly enhanced in vitro nanosecond pulse stimulation-induced cell death of KLN205 murine squamous cell carcinoma cells by 2.43-fold at 600 V and by 2.32-fold at 900 V, as evidenced by propidium iodide uptake. Furthermore, the ablation zone in KLN205 cells placed in a 3-dimensional cell-culture model and pulsed at a voltage of 900 V at 43°C was 3 times …


Electrosensitization Increases Antitumor Effectiveness Of Nanosecond Pulsed Electric Fields In Vivo, Claudia Muratori, Andrei G. Pakhomov, Loree Heller, Maura Casciola, Elena Gianulis, Sergey Grigoryev, Shu Xiao, Olga N. Pakhomova Jan 2017

Electrosensitization Increases Antitumor Effectiveness Of Nanosecond Pulsed Electric Fields In Vivo, Claudia Muratori, Andrei G. Pakhomov, Loree Heller, Maura Casciola, Elena Gianulis, Sergey Grigoryev, Shu Xiao, Olga N. Pakhomova

Bioelectrics Publications

Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-dose treatments for in vivo tumor ablation by nanosecond pulsed electric field. KLN 205 squamous carcinoma cells were embedded in an agarose gel or grown subcutaneously as tumors …


Bnnt- Mediated Irreversible Electroporation: It's Potential On Cancer Cells, V. Raffa, C. Riggio, M. W. Smith, K. C. Jordon, W. Cao, A. Cuschieri Jan 2012

Bnnt- Mediated Irreversible Electroporation: It's Potential On Cancer Cells, V. Raffa, C. Riggio, M. W. Smith, K. C. Jordon, W. Cao, A. Cuschieri

Applied Research Center Publications

Irreversible lethal electroporation (IRE) is a new non-thermal ablation modality that uses short pulses of high amplitude static electric fields (up 1000V/cm) to create irreversible pores in the cell membrane, thus, causing cell death. Recently, IRE has emerged as a promising clinical modality for cancer disease treatment. Here, we investigated the responses of tumour human He La cells when subjected to IRE in the presence of BNNTs. These consist of tiny tubes of B and N atoms (arranged in hexagons) with diameters ranging from a 1 to 3 nanometres and lengths <2 μm. BNNTs have attracted wide attention because of their unique electrical properties. We speculate that BNNTs, when interacting with cells exposed to static electrical fields, amplify locally the electric field, leading to cell death. In this work, electroporation assays were performed with a commercial electroporator using the cell-specific protocol suggested by the supplier (exponential decay wave, time constant 20ms) with the specific aim to compare IRE in absence and in presence of BNNTs. We observed that BNNTs have the capacity to decrease substantially the voltage required for IRE. When cells were pulsed at 800V/cm, we observed a 2,2-fold reduction in cell survival in the presence of BNNTs compared to controls. We conclude that the death of the tumour cells exposed to IRE is strongly enhanced in the presence of BNNTs, indicating their potential therapeutic application.