Open Access. Powered by Scholars. Published by Universities.®

Oncology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Oncology

Qu-Brats: Miccai Brats 2020 Challenge On Quantifying Uncertainty In Brain Tumor Segmentation - Analysis Of Ranking Scores And Benchmarking Results, Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard Mckinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-Han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-Min Pei, Murat Ak, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh Mchugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicholas Boutry, Alexis Huard, Lasitha Vidyaratne, Md. Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel Jan 2022

Qu-Brats: Miccai Brats 2020 Challenge On Quantifying Uncertainty In Brain Tumor Segmentation - Analysis Of Ranking Scores And Benchmarking Results, Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard Mckinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-Han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-Min Pei, Murat Ak, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh Mchugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicholas Boutry, Alexis Huard, Lasitha Vidyaratne, Md. Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel

Electrical & Computer Engineering Faculty Publications

Deep learning (DL) models have provided the state-of-the-art performance in a wide variety of medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder the translation of DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties, could enable clinical review of the most uncertain regions, thereby building trust and paving the way towards clinical translation. Recently, a number of uncertainty estimation methods have been introduced for DL medical image segmentation tasks. …


Uncertainty Estimation In Classification Of Mgnt Using Radiogenomics For Glioblastoma Patients, W. Farzana, Z. A. Shboul, A. Temtam, K. M. Iftekharuddin Jan 2022

Uncertainty Estimation In Classification Of Mgnt Using Radiogenomics For Glioblastoma Patients, W. Farzana, Z. A. Shboul, A. Temtam, K. M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Glioblastoma Multiforme (GBM) is one of the most malignant brain tumors among all high-grade brain cancers. Temozolomide (TMZ) is the first-line chemotherapeutic regimen for glioblastoma patients. The methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) gene is a prognostic biomarker for tumor sensitivity to TMZ chemotherapy. However, the standardized procedure for assessing the methylation status of MGMT is an invasive surgical biopsy, and accuracy is susceptible to resection sample and heterogeneity of the tumor. Recently, radio-genomics which associates radiological image phenotype with genetic or molecular mutations has shown promise in the non-invasive assessment of radiotherapeutic treatment. This study proposes a machine-learning framework …


Novel Report Of Expression And Function Of Cd97 In Malignant Gliomas: Correlation With Wilms Tumor 1 Expression And Glioma Cell Invasiveness Laboratory Investigation, Archana Chidambaram, Helen L. Fillmore, Timothy E. Van Meter, Catherine I. Dumur, William C. Broaddus Jan 2012

Novel Report Of Expression And Function Of Cd97 In Malignant Gliomas: Correlation With Wilms Tumor 1 Expression And Glioma Cell Invasiveness Laboratory Investigation, Archana Chidambaram, Helen L. Fillmore, Timothy E. Van Meter, Catherine I. Dumur, William C. Broaddus

Office of Research Faculty & Staff Publications

Object. The Wilms tumor 1 (WT1) protein—a developmentally regulated transcription factor—is aberrantly expressed in gliomas and promotes their malignant phenotype. However, little is known about the molecular allies that help it mediate its oncogenic functions in glioma cells.

Methods. The authors used short interfering RNA (siRNA) to suppress WT1 expression in glioblastoma (GBM) cells and evaluated the effect of this on GBM cell invasiveness. Gene expression analysis was then used to identify the candidate genes that were altered as a result of WT1 silencing. One candidate target, CD97, was then selected for further investigation into its role by suppressing …