Open Access. Powered by Scholars. Published by Universities.®

Oncology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Oncology

Enhancing Dna-Damaging Therapy Through The Inhibition Of Dntp Synthesis Using A Synergistic Drug Combination To Treat Pancreatic Neuroendocrine Neoplasms, Jennifer Castle Md Jan 2023

Enhancing Dna-Damaging Therapy Through The Inhibition Of Dntp Synthesis Using A Synergistic Drug Combination To Treat Pancreatic Neuroendocrine Neoplasms, Jennifer Castle Md

Theses and Dissertations--Clinical and Translational Science

Despite clinical advances, pancreatic neuroendocrine neoplasms (pNEN) remain a difficult clinical entity to treat and can carry a poor prognosis. Systemic therapy is used to treat pNENs which are not amenable to surgical resection. Peptide receptor radionuclide therapy, a form of radiation therapy (RT) and cisplatin are two different forms of DNA-damaging therapy in current use to treat pNENs. However, their efficacy remains poor as single agents. This study aimed to increase the sensitivity of pNENs to the DNA-damaging agents, RT and cisplatin, by inhibiting deoxynucleotide triphosphate (dNTP) synthesis. Triapine, a ribonucleotide reductase inhibitor (RNRi), and ataxia telangiectasia and Rad3-related …


Quantification Of Factors Governing Drug Release Kinetics From Nanoparticles: A Combined Experimental And Mechanistic Modeling Approach, Kyle Daniel Fugit Jan 2014

Quantification Of Factors Governing Drug Release Kinetics From Nanoparticles: A Combined Experimental And Mechanistic Modeling Approach, Kyle Daniel Fugit

Theses and Dissertations--Pharmacy

Advancements in nanoparticle drug delivery of anticancer agents require mathematical models capable of predicting in vivo formulation performance from in vitro characterization studies. Such models must identify and incorporate the physicochemical properties of the therapeutic agent and nanoparticle driving in vivo drug release. This work identifies these factors for two nanoparticle formulations of anticancer agents using an approach which develops mechanistic mathematical models in conjunction with experimental studies.

A non-sink ultrafiltration method was developed to monitor liposomal release kinetics of the anticancer agent topotecan. Mathematical modeling allowed simultaneous determination of drug permeability and interfacial binding to the bilayer from release …