Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Endocrinology, Diabetes, and Metabolism

Exposure To Pcb126 During The Nursing Period Reversibly Impacts Early-Life Glucose Tolerance, Brittany B. Rice, Keegan W. Sammons, Sara Y. Ngo Tenlep, Madeline T. Weltzer, Leryn J. Reynolds, Cetewayo S. Rashid, Hollie I. Swanson, Kevin J. Pearson Jan 2023

Exposure To Pcb126 During The Nursing Period Reversibly Impacts Early-Life Glucose Tolerance, Brittany B. Rice, Keegan W. Sammons, Sara Y. Ngo Tenlep, Madeline T. Weltzer, Leryn J. Reynolds, Cetewayo S. Rashid, Hollie I. Swanson, Kevin J. Pearson

Human Movement Sciences & Special Education Faculty Publications

Polychlorinated biphenyls (PCBs) are persistent environmental organic pollutants known to have detrimental health effects. Using a mouse model, we previously demonstrated that PCB126 exposure before and during pregnancy and throughout the perinatal period adversely affected offspring glucose tolerance and/or body composition profiles. The purpose of this study was to investigate the glucose tolerance and body composition of offspring born to dams exposed to PCB126 during the nursing period only. Female ICR mice were bred, and half of the dams were exposed to either vehicle (safflower oil) or 1 µmole PCB126 per kg of body weight via oral gavage on postnatal …


Sglt2 Inhibitor Therapy Improves Blood Glucose But Does Not Prevent Diabetic Bone Disease In Diabetic Dba/2j Male Mice, Kathryn M. Thrailkill, R. Clay Bunn, Jeffry S. Nyman, Mallikarjuna R. Rettiganti, Gael E. Cockrell, Elizabeth C. Wahl, Sasidhar Uppuganti, Charles K. Lumpkin, John L. Fowlkes Jan 2016

Sglt2 Inhibitor Therapy Improves Blood Glucose But Does Not Prevent Diabetic Bone Disease In Diabetic Dba/2j Male Mice, Kathryn M. Thrailkill, R. Clay Bunn, Jeffry S. Nyman, Mallikarjuna R. Rettiganti, Gael E. Cockrell, Elizabeth C. Wahl, Sasidhar Uppuganti, Charles K. Lumpkin, John L. Fowlkes

Barnstable Brown Diabetes Center Faculty Publications

Persons with type 1 and type 2 diabetes have increased fracture risk, attributed to deficits in the microarchitecture and strength of diabetic bone, thought to be mediated, in part, by the consequences of chronic hyperglycemia. Therefore, to examine the effects of a glucose-lowering SGLT2 inhibitor on blood glucose (BG) and bone homeostasis in a model of diabetic bone disease, male DBA/2J mice with or without streptozotocin (STZ)-induced hyperglycemia were fed chow containing the SGLT2 inhibitor, canagliflozin (CANA), or chow without drug, for 10 weeks of therapy. Thereafter, serum bone biomarkers were measured, fracture resistance of cortical bone was assessed by …