Open Access. Powered by Scholars. Published by Universities.®

Medical Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medical Physiology

Antigen Staining For Detection Of Muc13 And Muc16 Expression In Carcinoma Tissue, Jose A. Benitez May 2022

Antigen Staining For Detection Of Muc13 And Muc16 Expression In Carcinoma Tissue, Jose A. Benitez

MEDI 9331 Scholarly Activities Clinical Years

MUC13 and MUC16 are epithelial expressed proteins implicated in various carcinomas. Overexpression of these biomarkers appear to play a role in tumor growth; this discovery has paved a road for multiple studies discussing the potential of targeting mucin proteins and optimize immunotherapy approaches against carcinomas. Our study serves to investigate the level of expression of MUC13 and MUC16 in cancerous and normal tissue and to discuss the implications our findings may have for the utilization of these biomarkers for cancer therapy.


Differential Iron Regulatory Genetics In 2d & 3d Culture Of Breast Cancer Cells, Tyler Hanna, Suzy Torti Ph. D, Frank Torti M.D., Mph, Nicole Farra Ph. D. May 2019

Differential Iron Regulatory Genetics In 2d & 3d Culture Of Breast Cancer Cells, Tyler Hanna, Suzy Torti Ph. D, Frank Torti M.D., Mph, Nicole Farra Ph. D.

Honors Scholar Theses

The iron regulatory axis has consistently been shown to be perturbed in cancer cell lines relative to non-cancerous cell lines. As cancer cells rapidly divide and grow, they require iron to fuel many intracellular processes, including DNA replication and protein synthesis. Three-dimensional cell culture is an increasingly popular method of culture that purportedly more accurately mimics the in vivo microenvironment of cancers over traditional two-dimensional culture. This project was prompted by previous lab results to investigate differential iron regulatory gene expression in 2D and 3D spheroid culture models. We replicated the findings that the gene hepcidin is induced in 3D …


Absence Of Manganese Superoxide Dismutase Delays P53-Induced Tumor Formation., Adam J. Case, Frederick E. Domann Jan 2014

Absence Of Manganese Superoxide Dismutase Delays P53-Induced Tumor Formation., Adam J. Case, Frederick E. Domann

Journal Articles: Cellular & Integrative Physiology

BACKGROUND: Manganese superoxide dismutase (MnSOD) is a mitochondrial antioxidant enzyme that is down-regulated in a majority of cancers. Due to this observation, as well as MnSOD's potent antioxidant enzymatic activity, MnSOD has been suggested as a tumor suppressor for over 30 years. However, testing this postulate has proven difficult due to the early post-natal lethality of the MnSOD constitutive knock-out mouse. We have previously used a conditional tissue-specific MnSOD knock-out mouse to study the effects of MnSOD loss on the development of various cell types, but long-term cancer development studies have not been performed. We hypothesized the complete loss of …