Open Access. Powered by Scholars. Published by Universities.®

Medical Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Neurobiology

Inhibition Of Soluble Tumor Necrosis Factor Ameliorates Synaptic Alterations And Ca2+ Dysregulation In Aged Rats, Diana M. Sama, Hafiz Mohmmad Abdul, Jennifer L. Furman, Irina A. Artiushin, David E. Szymkowski, Stephen W. Scheff, Christopher M. Norris May 2012

Inhibition Of Soluble Tumor Necrosis Factor Ameliorates Synaptic Alterations And Ca2+ Dysregulation In Aged Rats, Diana M. Sama, Hafiz Mohmmad Abdul, Jennifer L. Furman, Irina A. Artiushin, David E. Szymkowski, Stephen W. Scheff, Christopher M. Norris

Graduate Center for Gerontology Faculty Publications

The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4-6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits …


Mitogen Activated Protein Kinase Phosphatase-1 Prevents The Development Of Tactile Sensitivity In A Rodent Model Of Neuropathic Pain, Christian Ndong, Russell P. Landry, Joyce A. Deleo, Edgar A. Romero-Sandoval Apr 2012

Mitogen Activated Protein Kinase Phosphatase-1 Prevents The Development Of Tactile Sensitivity In A Rodent Model Of Neuropathic Pain, Christian Ndong, Russell P. Landry, Joyce A. Deleo, Edgar A. Romero-Sandoval

Dartmouth Scholarship

Neuropathic pain due to nerve injury is one of the most difficult types of pain to treat. Following peripheral nerve injury, neuronal and glial plastic changes contribute to central sensitization and perpetuation of mechanical hypersensitivity in rodents. The mitogen activated protein kinase (MAPK) family is pivotal in this spinal cord plasticity. MAPK phosphatases (MKPs) limit inflammatory processes by dephosphorylating MAPKs. For example, MKP-1 preferentially dephosphorylates p-p38. Since spinal p-p38 is pivotal for the development of chronic hypersensitivity in rodent models of pain, and p-p38 inhibitors have shown clinical potential in acute and chronic pain patients, we hypothesize that induction of …