Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Signal Transduction

Department of Biochemistry and Molecular Biology Faculty Papers

Articles 1 - 2 of 2

Full-Text Articles in Medical Molecular Biology

Identification Of A Β-Arrestin-Biased Negative Allosteric Modulator For The Β2-Adrenergic Receptor, Michael Ippolito, Francesco De Pascali, Nathan Hopfinger, Konstantin E. Komolov, Daniela Laurinavichyute, Poli Adi Narayana Reddy, Leon A. Sakkal, Kyle Z. Rajkowski, Ajay P. Nayak, Justin Lee, Jordan Lee, Gaoyuan Cao, Preston S. Donover, Melvin Reichman, Stevens. An, Joseph M. Salvino, Raymond B. Penn, Roger S S. Armen, Charles P. Scott, Jeffrey L. Benovic Aug 2023

Identification Of A Β-Arrestin-Biased Negative Allosteric Modulator For The Β2-Adrenergic Receptor, Michael Ippolito, Francesco De Pascali, Nathan Hopfinger, Konstantin E. Komolov, Daniela Laurinavichyute, Poli Adi Narayana Reddy, Leon A. Sakkal, Kyle Z. Rajkowski, Ajay P. Nayak, Justin Lee, Jordan Lee, Gaoyuan Cao, Preston S. Donover, Melvin Reichman, Stevens. An, Joseph M. Salvino, Raymond B. Penn, Roger S S. Armen, Charles P. Scott, Jeffrey L. Benovic

Department of Biochemistry and Molecular Biology Faculty Papers

Catecholamine-stimulated β2-adrenergic receptor (β2AR) signaling via the canonical Gs–adenylyl cyclase–cAMP–PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous β-agonists in the treatment of airway disease. β2AR signaling is tightly regulated by GRKs and β-arrestins, which together promote β2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias β2AR signaling toward the Gs pathway while avoiding β-arrestin-mediated effects may provide a strategy to improve the functional consequences of β2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the β2AR have been largely unsuccessful, here we …


Dysregulated Gpcr Signaling And Therapeutic Options In Uveal Melanoma., Vivian Chua, Dominic Lapadula, Clinita Randolph, Jeffrey L. Benovic, Philip B. Wedegaertner, Andrew E. Aplin May 2017

Dysregulated Gpcr Signaling And Therapeutic Options In Uveal Melanoma., Vivian Chua, Dominic Lapadula, Clinita Randolph, Jeffrey L. Benovic, Philip B. Wedegaertner, Andrew E. Aplin

Department of Biochemistry and Molecular Biology Faculty Papers

Uveal melanoma is the most common primary intraocular malignant tumor in adults and arises from the transformation of melanocytes in the uveal tract. Even after treatment of the primary tumor, up to 50% of patients succumb to metastatic disease. The liver is the predominant organ of metastasis. There is an important need to provide effective treatment options for advanced stage uveal melanoma. To provide the preclinical basis for new treatments, it is important to understand the molecular underpinnings of the disease. Recent genomic studies have shown that mutations within components of G protein-coupled receptor (GPCR) signaling are early events associated …