Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

Theses/Dissertations

Discipline
Institution
Keyword
Publication

Articles 1 - 11 of 11

Full-Text Articles in Medical Molecular Biology

Hyperpolarized Carbon-13 Magnetic Resonance Measurements Of Tissue Perfusion And Metabolism, Keith Michel Dec 2020

Hyperpolarized Carbon-13 Magnetic Resonance Measurements Of Tissue Perfusion And Metabolism, Keith Michel

Dissertations & Theses (Open Access)

Hyperpolarized Magnetic Resonance Imaging (HP MRI) is an emerging modality that enables non-invasive interrogation of cells and tissues with unprecedented biochemical detail. This technology provides rapid imaging measurements of the activity of a small quantity of molecules with a strongly polarized nuclear magnetic moment. This polarization is created in a polarizer separate from the imaging magnet, and decays continuously towards a non-detectable thermal equilibrium once the imaging agent is removed from the polarizer and administered by intravenous injection. Specialized imaging strategies are therefore needed to extract as much information as possible from the HP signal during its limited lifetime.

In …


Cancer-Targeting Immunostimulatory Peptides As An Immunotherapeutic Approach To Cancer, Rachel Montel Aug 2020

Cancer-Targeting Immunostimulatory Peptides As An Immunotherapeutic Approach To Cancer, Rachel Montel

Seton Hall University Dissertations and Theses (ETDs)

This dissertation reports the synthesis and biological applications of bifunctional trimeric peptides with B7H6-derived NKp30 binding motifs that serve to activate an immunocytotoxic response in natural killer cells and a GRP78-binding motif that can target tumors that express surface GRP78. In this manner the cancer-targeting immunostimulatory peptides are anticipated to directly bind and activate effector NK92-MI cells while also recognizing and binding to target A549 tumor cells to facilitate NK cell-dependent immunocytotoxicity of the targeted tumors. The NKp30 binding peptide motifs are derived from the tumor associated B7H6 antigen that is often downregulated or shed from the surface of tumors …


Effect Of S100b Deletion On Membrane Properties And Localization Of Ncald And Hpca, Natasha Hesketh Aug 2020

Effect Of S100b Deletion On Membrane Properties And Localization Of Ncald And Hpca, Natasha Hesketh

Graduate School of Biomedical Sciences Theses and Dissertations

Calcium signaling is particularly important for neuronal function. Neurons utilize a wide range of calcium-binding proteins. Dysregulation of such proteins is linked to neurodegeneration. Neurocalcin delta (NCALD), hippocalcin (HPCA), and S100B are calcium sensors that are expressed in the hippocampus, a brain region essential to memory and severely damaged in Alzheimer’s disease (AD). Despite the potential importance of these proteins, we do not fully understand the physiological significance of their relationship. Because NCALD and HPCA are known to interact with S100B, we hypothesized that the loss of S100B affects NCALD and HPCA localization, and therefore electrical properties, of hippocampal neurons. …


Implications Of Long Non-Coding Rnas In The Pathogenesis Of Diabetic Retinopathy: A Novel Epigenetic Paradigm., Saumik Biswas Jul 2020

Implications Of Long Non-Coding Rnas In The Pathogenesis Of Diabetic Retinopathy: A Novel Epigenetic Paradigm., Saumik Biswas

Electronic Thesis and Dissertation Repository

With the rising incidence of diabetic retinopathy (DR), there is an urgent need for novel therapies. Presently, several altered metabolic pathways have been implicated in the pathogenesis of DR. Recent advances in genomic technologies have identified considerable epigenetic alterations that also contribute to DR progression. Long non-coding RNAs (lncRNAs; >200 nucleotides), critical regulators of gene expression, are aberrantly expressed in DR and have not been comprehensively characterized. Our microarray analyses using human retinal endothelial cells (HRECs) revealed thousands of differentially expressed lncRNAs following high glucose (HG) exposure, with profound increases in the lncRNAs MALAT1 and HOTAIR. Using multiple techniques, …


Molecular Mechanisms Of Manganese Porphyrin Compounds In The Prevention Of Radiation-Induced Fibrosis, Shashank Shrishrimal May 2020

Molecular Mechanisms Of Manganese Porphyrin Compounds In The Prevention Of Radiation-Induced Fibrosis, Shashank Shrishrimal

Theses & Dissertations

Radiation therapy is frequently used as a treatment strategy for prostate cancer patients, which leads to several side effects due to damage to health tissue around the tumor and the development of radiation-induced fibrosis (RIF). Manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP or T2E or BMX-010) and other similar manganese porphyrin compounds that scavenge superoxide molecules have been demonstrated to be effective radioprotectors and prevent the development of RIF. However, understanding of the radioprotective molecular pathway associated with these compounds remains limited. Recent RNA-sequencing data from our laboratory revealed that MnTE-2-PyP treatment may activate the nuclear factor erythroid 2-related factor 2 …


The Autoimmune System: The Effect Of Physiological Stressors On Autoantibody Glycosylation And Fidelity Of Autoantibody Profiles, Rahil Kheirkhah May 2020

The Autoimmune System: The Effect Of Physiological Stressors On Autoantibody Glycosylation And Fidelity Of Autoantibody Profiles, Rahil Kheirkhah

Graduate School of Biomedical Sciences Theses and Dissertations

The presence of thousands of autoantibodies (aABs) in the human sera is typical, and therefore it is possible to identify an aAB profile for each individual. In the first part of this thesis, we will show the cerebrospinal fluid also exhibits an extraordinarily complex immunoglobulin G aAB profile that is composed of thousands of aABs. We show that the pattern of expression of individual aABs in CSF closely mimics that in the blood, indicative of a blood-based origin for CSF aABs. In addition, using longitudinal serum samples obtained over a span of nine years, we show remarkable stability in aAB …


The Implementation Of Exercise For Chronic Kidney Disease And Dialysis Patients, Syed Ahmad Rizvi Apr 2020

The Implementation Of Exercise For Chronic Kidney Disease And Dialysis Patients, Syed Ahmad Rizvi

Honors College Theses

While commonly known to be the organ that helps with urine production within the human body, the kidney plays one of the most crucial roles in maintaining homeostasis. When establishing all of the roles the kidney has on keeping humans healthy, there is the question of how does the body cope when a patient is diagnosed with kidney failure. One of the more common treatment options that allows the body to continue to function without a kidney is by beginning a patient on a form of dialysis. However, as with any treatment, there will always be a list of side …


Dysfunctional Mitochondrial Biogenesis: A Potential Underlying Cause For Metabolic Diseases, Caroline Ann Hunter Jan 2020

Dysfunctional Mitochondrial Biogenesis: A Potential Underlying Cause For Metabolic Diseases, Caroline Ann Hunter

Theses, Dissertations and Capstones

Mitochondria are essential organelles that play crucial roles in many aspects of cellular homeostasis. More importantly, the mitochondria are home to the majority of the metabolic pathways within the cell and are responsible for producing most of the cell’s useable energy in the form of adenine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). In mammals, the majority of OXPHOS complex subunits are encoded by nuclear deoxyribonucleic acid (DNA); however, 13 core subunits essential for the function of OXPHOS complexes I, III, IV, and V are encoded in the mitochondrial (mt) DNA (mtDNA) and are synthesized within the mitochondria by its own …


Examining The Role Of Metabolic Pathways As Therapeutic Modalities For Triple Negative Breast Cancer, Jeremy Andrew Johnson Jan 2020

Examining The Role Of Metabolic Pathways As Therapeutic Modalities For Triple Negative Breast Cancer, Jeremy Andrew Johnson

Theses and Dissertations--Toxicology and Cancer Biology

Triple negative breast cancer (TNBC) comprises 15-20% of breast cancers, affects a younger patient population than other subtypes, and is very aggressive. TNBC is comprised of a diverse group of tumors that have proven refractory to targeted therapy and can be difficult to treat. Patients generally receive neoadjuvant chemotherapy (NAC), surgery, and radiotherapy. The standard of care for NAC includes a taxane, an anthracycline, and/or cyclophosphamide, and administration of NAC has resulted in pathological complete response (pCR) in 30-40% of patients. However, a majority of TNBC patients will not reach pCR and instead have residual disease (RD), which is associated …


Detection Of A Peptide Hormone - Somatostatin - Label-Free Split-Aptameric Probes, Charles A. Dowis Jan 2020

Detection Of A Peptide Hormone - Somatostatin - Label-Free Split-Aptameric Probes, Charles A. Dowis

Honors Undergraduate Theses

Peptide hormones are important biomolecules that transduce downstream effects such as cell proliferation, regulation, and gene expression. Their levels have been upregulated in various disorders such as cancer, yet detection methods are lacking. We designed two split aptamer-based assays for the detection of a peptide hormone – Somatostatin (SST) – with different signal readouts: fluorescent readout based on light-up aptamers and the colorimetric readout of ABTS peroxidation from a G-quadruplex. We used an already selected split-aptamer –SSTA5–for SST for our designs and we had expected the developed detection systems to exhibit detection and quantification capabilities that would hopefully allow their …


Elucidating Molecular Function Of Mithramycin And Analogues For The Treatment Of Ews-Ets Expressing Cancers, Reiya Hayden Jan 2020

Elucidating Molecular Function Of Mithramycin And Analogues For The Treatment Of Ews-Ets Expressing Cancers, Reiya Hayden

Theses and Dissertations--Pharmacy

Introduction: Chromosomal translocations are common in cancer. In many cancers such as prostate cancer, leukemia and Ewing sarcoma, chromosomal translocations are the main driver of malignancy. Ewing sarcoma is a cancer diagnosed mostly in children and adolescents that has very grim outcomes for patients with metastasis and recurrent disease. Malignancy in Ewing sarcoma is due to EWS-FLI1, an aberrant transcription factor that is the result of a chromosomal translocation. EWS-FLI1 is the main driver of oncogenesis in Ewing sarcoma and has been the target of many drugs developed to treat the disease. Mithramycin (MTM) was identified as a potent inhibitor …