Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Molecular Biology

Dysregulation Of Ryr Calcium Channel Causes The Onset Of Mitochondrial Retrograde Signaling, Anindya Roy Chowdhury, Satish Srinivasan, György Csordás, György Hajnóczky, Narayan G Avadhani Aug 2020

Dysregulation Of Ryr Calcium Channel Causes The Onset Of Mitochondrial Retrograde Signaling, Anindya Roy Chowdhury, Satish Srinivasan, György Csordás, György Hajnóczky, Narayan G Avadhani

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

This study shows that multiple modes of mitochondrial stress generated by partial mtDNA depletion or cytochrome c oxidase disruption cause ryanodine receptor channel (RyR) dysregulation, which instigates the release of Ca2+ in the cytoplasm of C2C12 myoblasts and HCT116 carcinoma cells. We also observed a reciprocal downregulation of IP3R channel activity and reduced mitochondrial uptake of Ca2+. Ryanodine, an RyR antagonist, abrogated the mitochondrial stress-mediated increase in [Ca2+]c and the entire downstream signaling cascades of mitochondrial retrograde signaling. Interestingly, ryanodine also inhibited mitochondrial stress-induced invasive behavior in mtDNA-depleted C2C12 cells and HCT116 carcinoma cells. In addition, co-immunoprecipitation shows reduced FKBP12 …


Effect Of S100b Deletion On Membrane Properties And Localization Of Ncald And Hpca, Natasha Hesketh Aug 2020

Effect Of S100b Deletion On Membrane Properties And Localization Of Ncald And Hpca, Natasha Hesketh

Graduate School of Biomedical Sciences Theses and Dissertations

Calcium signaling is particularly important for neuronal function. Neurons utilize a wide range of calcium-binding proteins. Dysregulation of such proteins is linked to neurodegeneration. Neurocalcin delta (NCALD), hippocalcin (HPCA), and S100B are calcium sensors that are expressed in the hippocampus, a brain region essential to memory and severely damaged in Alzheimer’s disease (AD). Despite the potential importance of these proteins, we do not fully understand the physiological significance of their relationship. Because NCALD and HPCA are known to interact with S100B, we hypothesized that the loss of S100B affects NCALD and HPCA localization, and therefore electrical properties, of hippocampal neurons. …


Epigenetic Targeting Of Mcl-1 Is Synthetically Lethal With Bcl-Xl/Bcl-2 Inhibition In Model Systems Of Glioblastoma, Enyuan Shang, Trang T. T. Nguyen, Chang Shu, Mike-Andrew Westhoff, Georg Karpel-Massler, Markus D. Siegelin Aug 2020

Epigenetic Targeting Of Mcl-1 Is Synthetically Lethal With Bcl-Xl/Bcl-2 Inhibition In Model Systems Of Glioblastoma, Enyuan Shang, Trang T. T. Nguyen, Chang Shu, Mike-Andrew Westhoff, Georg Karpel-Massler, Markus D. Siegelin

Publications and Research

Apoptotic resistance remains a hallmark of glioblastoma (GBM), the most common primary brain tumor in adults, and a better understanding of this process may result in more efficient treatments. By utilizing chromatin immunoprecipitation with next-generation sequencing (CHIP-seq), we discovered that GBMs harbor a super enhancer around the Mcl-1 locus, a gene that has been known to confer cell death resistance in GBM.We utilized THZ1, a known super-enhancer blocker, and BH3-mimetics, including ABT263, WEHI-539, and ABT199. Combined treatment with BH3-mimetics and THZ1 led to synergistic growth reduction in GBM models. Reduction in cellular viability was accompanied by significant cell death induction …


The Autoimmune System: The Effect Of Physiological Stressors On Autoantibody Glycosylation And Fidelity Of Autoantibody Profiles, Rahil Kheirkhah May 2020

The Autoimmune System: The Effect Of Physiological Stressors On Autoantibody Glycosylation And Fidelity Of Autoantibody Profiles, Rahil Kheirkhah

Graduate School of Biomedical Sciences Theses and Dissertations

The presence of thousands of autoantibodies (aABs) in the human sera is typical, and therefore it is possible to identify an aAB profile for each individual. In the first part of this thesis, we will show the cerebrospinal fluid also exhibits an extraordinarily complex immunoglobulin G aAB profile that is composed of thousands of aABs. We show that the pattern of expression of individual aABs in CSF closely mimics that in the blood, indicative of a blood-based origin for CSF aABs. In addition, using longitudinal serum samples obtained over a span of nine years, we show remarkable stability in aAB …