Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Molecular Biology

Mechanism Of Rare Variant In Acta2, P.Arg149cys, Driving Diverse Vascular Disease, Kaveeta Kaw May 2022

Mechanism Of Rare Variant In Acta2, P.Arg149cys, Driving Diverse Vascular Disease, Kaveeta Kaw

Dissertations & Theses (Open Access)

Heterozygous variants in ACTA2 (smooth muscle (SM) α-actin) predispose to thoracic aortic aneurysms and dissections (TAAD) and early-onset coronary artery disease (CAD). The most common ACTA2 mutation is a genetic alteration of arginine 149 to a cysteine, ACTA2 p.Arg149Cys, which accounts for disease in 24% of all ACTA2 mutation carriers.(1) ACTA2 p.Arg149Cys mutation carriers present with either TAAD or CAD but rarely have both diseases. To identify the molecular mechanisms dictating whether an individual with ACTA2 p.Arg149Cys develops TAAD or CAD, CRISPR/Cas9 technology was used to generate the mutant mouse, Acta2R149C/+, in a C57BL6 background. Acta2R149C/+ mice …


Control Of Ccnd1 Ubiquitylation By The Catalytic Saga Subunit Usp22 Is Essential For Cell Cycle Progression Through G1 In Cancer Cells., Victoria J. Gennaro, Timothy J. Stanek, Amy R. Peck, Yunguang Sun, Feng Wang, Shuo Qie, Karen E. Knudsen, Hallgeir Rui, Tauseef Butt, J. Alan Diehl, Steven B. Mcmahon Oct 2018

Control Of Ccnd1 Ubiquitylation By The Catalytic Saga Subunit Usp22 Is Essential For Cell Cycle Progression Through G1 In Cancer Cells., Victoria J. Gennaro, Timothy J. Stanek, Amy R. Peck, Yunguang Sun, Feng Wang, Shuo Qie, Karen E. Knudsen, Hallgeir Rui, Tauseef Butt, J. Alan Diehl, Steven B. Mcmahon

Department of Biochemistry and Molecular Biology Faculty Papers

Overexpression of the deubiquitylase ubiquitin-specific peptidase 22 (USP22) is a marker of aggressive cancer phenotypes like metastasis, therapy resistance, and poor survival. Functionally, this overexpression of USP22 actively contributes to tumorigenesis, as USP22 depletion blocks cancer cell cycle progression in vitro, and inhibits tumor progression in animal models of lung, breast, bladder, ovarian, and liver cancer, among others. Current models suggest that USP22 mediates these biological effects via its role in epigenetic regulation as a subunit of the Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional cofactor complex. Challenging the dogma, we report here a nontranscriptional role for USP22 via a direct effect on the …