Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medical Molecular Biology

Applying Mci-062, A Novel Pan-Ras Inhibitor, To Treat Kras-Mutant Lung Cancer., Richard Fu May 2022

Applying Mci-062, A Novel Pan-Ras Inhibitor, To Treat Kras-Mutant Lung Cancer., Richard Fu

Poster Presentations

Honors thesis poster presentation.

RAS, one of the most prevalent oncogenes, is mutated in 27% of human cancers. Gainof- function RAS mutations activate multiple downstream pathways, including the RASRAF- MEK-ERK and PI3K/AKT/mTOR pathways, which are critical in tumorigenesis and cancer cell proliferation. The RAS proteins KRAS, HRAS, and NRAS along with their downstream effectors are attractive targets for cancer therapy since they act as frequent drivers in lung, colorectal, and pancreatic cancers. However, RAS proteins have relatively smooth surfaces that lack traditional binding pockets, making inhibitors specific to RAS difficult to create. Recently, a novel small molecule pan-RAS inhibitor named …


Applying Mci-062, A Novel Pan-Ras Inhibitor, To Treat Kras-Mutant Lung Cancer, Richard Fu May 2022

Applying Mci-062, A Novel Pan-Ras Inhibitor, To Treat Kras-Mutant Lung Cancer, Richard Fu

Honors Theses

RAS is a prevalent oncogene that is mutated in 27% of human cancers. Gain-of-function RAS mutations activate multiple downstream pathways, including the RAS-RAF-MEK-ERK and PI3K/AKT/mTOR pathways, which are critical in tumorigenesis and cancer cell proliferation. RAS proteins such as KRAS, a member of the RAS protein family, and their downstream effectors are attractive targets for cancer therapy since their mutations act as frequent drivers in lung, colorectal, and pancreatic cancers. However, RAS proteins have relatively smooth surfaces that lack traditional binding pockets, making inhibitors specific to RAS difficult to create. Recently, a novel small molecule pan-RAS inhibitor named MCI-062 was …


N-Glycosylation-Defective Splice Variants Of Neuropilin-1 Promote Metastasis By Activating Endosomal Signals, Xiuping Huang, Qing Ye, Min Chen, Aimin Li, Wenting Mi, Yuxin Fang, Yekaterina Y. Zaytseva, Kathleen L. O'Connor, Craig W. Vander Kooi, Side Liu, Qing-Bai She Aug 2019

N-Glycosylation-Defective Splice Variants Of Neuropilin-1 Promote Metastasis By Activating Endosomal Signals, Xiuping Huang, Qing Ye, Min Chen, Aimin Li, Wenting Mi, Yuxin Fang, Yekaterina Y. Zaytseva, Kathleen L. O'Connor, Craig W. Vander Kooi, Side Liu, Qing-Bai She

Markey Cancer Center Faculty Publications

Neuropilin-1 (NRP1) is an essential transmembrane receptor with a variety of cellular functions. Here, we identify two human NRP1 splice variants resulting from the skipping of exon 4 and 5, respectively, in colorectal cancer (CRC). Both NRP1 variants exhibit increased endocytosis/recycling activity and decreased levels of degradation, leading to accumulation on endosomes. This increased endocytic trafficking of the two NRP1 variants, upon HGF stimulation, is due to loss of N-glycosylation at the Asn150 or Asn261 site, respectively. Moreover, these NRP1 variants enhance interactions with the Met and β1-integrin receptors, resulting in Met/β1-integrin co-internalization and co-accumulation on endosomes. This provides persistent …