Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Molecular Biology

Primary Cilia Of The Cardiac Neural Crest & Hedgehog-Mediated Mechanisms Of Congenital Heart Disease, Lindsey A. Fitzsimons May 2022

Primary Cilia Of The Cardiac Neural Crest & Hedgehog-Mediated Mechanisms Of Congenital Heart Disease, Lindsey A. Fitzsimons

Electronic Theses and Dissertations

Elimination of primary cilia in cardiac neural crest cell (CNCC) progenitors is hypothesized to cause a variety of congenital heart defects (CHDs), including atrioventricular septal defects, and malformations of the developing cardiac outflow tract. We present an in vivo model of CHD resulting from the conditional elimination of primary cilia from CNCC using multiple, Wnt1:Cre-loxP, neural crest-specific systems, targeting two distinctive, but critical, primary cilia structural genes: Intraflagellar transport protein 88 (Ift88) or kinesin family member 3A (Kif3a). CNCC loss of primary cilia leads to widespread CHD, where homozygous mutant embryos (MUT) display a variety of outflow tract malformations, septation …


Role Of Ataxia Telangiectasia Mutated Kinase In The Healing Process Of The Heart Following Myocardial Infarction, Laura L. Daniel May 2015

Role Of Ataxia Telangiectasia Mutated Kinase In The Healing Process Of The Heart Following Myocardial Infarction, Laura L. Daniel

Electronic Theses and Dissertations

Ataxia telangiectasia (AT), caused by mutations in the gene encoding ataxia telangiectasia mutated kinase (ATM), is a rare autosomal recessive disorder. AT individuals exhibit neuronal degeneration and are predisposed to cancer. Carriers of this disorder are predisposed to cancer and ischemic heart disease. Heart disease, mostly due to myocardial infarction (MI), is a leading cause of death in the US. Following MI, release of catecholamines in the heart stimulates β- adrenergic receptors (β-AR). Our lab has shown that β-AR stimulation increases ATM expression in the heart and myocytes, and ATM plays an important role in β-AR-stimulated myocardial remodeling with effects …