Open Access. Powered by Scholars. Published by Universities.®

Medical Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Microbiology

The Virulence Activator Apha Links Quorum Sensing To Pathogenesis And Physiology In Vibrio Cholerae By Repressing The Expression Of A Penicillin Amidase Gene On The Small Chromosome, Gabriela Kovacikova, Wei Lin, Karen Skorupski Aug 2003

The Virulence Activator Apha Links Quorum Sensing To Pathogenesis And Physiology In Vibrio Cholerae By Repressing The Expression Of A Penicillin Amidase Gene On The Small Chromosome, Gabriela Kovacikova, Wei Lin, Karen Skorupski

Dartmouth Scholarship

Activation of the tcpPH promoter on the Vibrio pathogenicity island by AphA and AphB initiates the Vibrio cholerae virulence cascade and is regulated by quorum sensing through the repressive action of HapR on aphA expression. To further understand how the chromosomally encoded AphA protein activates tcpPH expression, site-directed mutagenesis was used to identify the base pairs critical for AphA binding and transcriptional activation. This analysis revealed a region of partial dyad symmetry, TATGCA-N6-TNCNNA, that is important for both of these activities. Searching the V. cholerae genome for this binding site permitted the identification of a second one upstream of a …


Crystal Structure Of The Sars Protein From Staphylococcus Aureus, Ronggui Li, Adhar C. Manna, Shaodong Dai, Ambrose L. Cheung, Gongyi Zhang Jul 2003

Crystal Structure Of The Sars Protein From Staphylococcus Aureus, Ronggui Li, Adhar C. Manna, Shaodong Dai, Ambrose L. Cheung, Gongyi Zhang

Dartmouth Scholarship

The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g., sarA and agr). One of these determinants, protein A (spa), is activated by sarS, which encodes a 250-residue DNA-binding protein. Genetic analysis indicated that the agr locus likely mediates spa repression by suppressing the transcription of sarS. Contrary to SarA and SarR, which require homodimer formation for proper function, SarS is unusual within the SarA protein family in that it contains two homologous halves, with each half sharing sequence similarity to SarA and SarR. Here we report the 2.2 Å …


Alpha-Toxin Is Required For Biofilm Formation By Staphylococcus Aureus, Nicky C. Caiazza, George A. O'Toole May 2003

Alpha-Toxin Is Required For Biofilm Formation By Staphylococcus Aureus, Nicky C. Caiazza, George A. O'Toole

Dartmouth Scholarship

Staphylococcus aureus is a common pathogen associated with nosocomial infections. It can persist in clinical settings and gain increased resistance to antimicrobial agents through biofilm formation. We have found that alpha-toxin, a secreted, multimeric, hemolytic toxin encoded by the hla gene, plays an integral role in biofilm formation. The hla mutant was unable to fully colonize plastic surfaces under both static and flow conditions. Based on microscopy studies, we propose that alpha-hemolysin is required for cell-to-cell interactions during biofilm formation.


Rhamnolipid Surfactant Production Affects Biofilm Architecture In Pseudomonas Aeruginosa Pao1, Mary E. Davey, Nicky C. Caiazza, George A. O'Toole Feb 2003

Rhamnolipid Surfactant Production Affects Biofilm Architecture In Pseudomonas Aeruginosa Pao1, Mary E. Davey, Nicky C. Caiazza, George A. O'Toole

Dartmouth Scholarship

In response to certain environmental signals, bacteria will differentiate from an independent free-living mode of growth and take up an interdependent surface-attached existence. These surface-attached microbial communities are known as biofilms. In flowing systems where nutrients are available, biofilms can develop into elaborate three-dimensional structures. The development of biofilm architecture, particularly the spatial arrangement of colonies within the matrix and the open areas surrounding the colonies, is thought to be fundamental to the function of these complex communities. Here we report a new role for rhamnolipid surfactants produced by the opportunistic pathogen Pseudomonas aeruginosa in the maintenance of biofilm architecture. …