Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Genetics

Targeted Aav5-Smad7 Gene Therapy Inhibits Corneal Scarring In Vivo, Suneel Gupta, Jason T. Rodier, Ajay Sharma, Elizabeth A. Giuliano, Prashant R. Sinha, Nathan P. Hesemann, Arkasubhra Ghosh, Rajiv R. Mohan Mar 2017

Targeted Aav5-Smad7 Gene Therapy Inhibits Corneal Scarring In Vivo, Suneel Gupta, Jason T. Rodier, Ajay Sharma, Elizabeth A. Giuliano, Prashant R. Sinha, Nathan P. Hesemann, Arkasubhra Ghosh, Rajiv R. Mohan

Pharmacy Faculty Articles and Research

Corneal scarring is due to aberrant activity of the transforming growth factor β (TGFβ) signaling pathway following traumatic, mechanical, infectious, or surgical injury. Altered TGFβ signaling cascade leads to downstream Smad (Suppressor of mothers against decapentaplegic) protein-mediated signaling events that regulate expression of extracellular matrix and myogenic proteins. These events lead to transdifferentiation of keratocytes into myofibroblasts through fibroblasts and often results in permanent corneal scarring. Hence, therapeutic targets that reduce transdifferentiation of fibroblasts into myofibroblasts may provide a clinically relevant approach to treat corneal fibrosis and improve long-term visual outcomes. Smad7 protein regulates the functional effects of TGFβ signaling …


An Rnai Screen To Identify Components Of A Polyamine Transport System, Adam J. Foley Jan 2017

An Rnai Screen To Identify Components Of A Polyamine Transport System, Adam J. Foley

Honors Undergraduate Theses

Polyamines, specifically putrescine, spermidine, and spermine, are small cationic molecules found in all organisms. Cells can biosynthetically make these molecules, or alternatively, they can be transported from the extracellular environment. Malignant cells have been shown to require relatively high amounts of polyamines. There is a chemotherapeutic agent, DFMO, used to block the biosynthesis of polyamines. Many malignant cells can circumvent DFMO therapy by activating their transport system. A potential solution is to simultaneously block biosynthesis and transport of polyamines. However, little is known about the polyamine transport system in higher eukaryotes.

This thesis aims to add to the basic biological …