Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medical Genetics

Combinational Sirna Delivery Using Hyaluronic Acid Modified Amphiphilic Polyplexes Against Cell Cycle And Phosphatase Proteins To Inhibit Growth And Migration Of Triple-Negative Breast Cancer Cells, Manoj B. Parmar, Daniel Nisakar Meenakshi Sundaram, Remant Bahadur Kc, Robert Maranchuk, Hamidreza Montazeri Aliabadi, Judith C. Hugh, Raimar Löbenberg, Hasan Uludağ Nov 2017

Combinational Sirna Delivery Using Hyaluronic Acid Modified Amphiphilic Polyplexes Against Cell Cycle And Phosphatase Proteins To Inhibit Growth And Migration Of Triple-Negative Breast Cancer Cells, Manoj B. Parmar, Daniel Nisakar Meenakshi Sundaram, Remant Bahadur Kc, Robert Maranchuk, Hamidreza Montazeri Aliabadi, Judith C. Hugh, Raimar Löbenberg, Hasan Uludağ

Pharmacy Faculty Articles and Research

Triple-negative breast cancer is an aggressive form of breast cancer with few therapeutic options if it recurs after adjuvant chemotherapy. RNA interference could be an alternative therapy for metastatic breast cancer, where small interfering RNA (siRNA) can silence the expression of aberrant genes critical for growth and migration of malignant cells. Here, we formulated a siRNA delivery system using lipid-substituted polyethylenimine (PEI) and hyaluronic acid (HA), and characterized the size, ζ-potential and cellular uptake of the nanoparticulate delivery system. Higher cellular uptake of siRNA by the tailored PEI/HA formulation suggested better interaction of complexes with breast cancer cells due to …


Difatty Acyl-Conjugated Linear And Cyclic Peptides For Sirna Delivery, Hung Do, Meenakshi Sharma, Naglaa Salem El-Sayed, Parvin Mahdipoor, Emira Bousoik, Keykavous Parang, Hamidreza Montazeri Aliabadi Oct 2017

Difatty Acyl-Conjugated Linear And Cyclic Peptides For Sirna Delivery, Hung Do, Meenakshi Sharma, Naglaa Salem El-Sayed, Parvin Mahdipoor, Emira Bousoik, Keykavous Parang, Hamidreza Montazeri Aliabadi

Pharmacy Faculty Articles and Research

A number of amphiphilic difatty acyl linear and cyclic R5K2 peptide conjugates were synthesized by solid-phase peptide methods to enhance the interaction with the hydrophobic cellular phospholipid bilayer and to improve siRNA delivery and silencing. Binding to siRNA molecules was significantly less for the cyclic peptide conjugates. A gradual decrease was observed in the particle size of the complexes with increasing peptide/siRNA ratio for most of the synthesized peptides, suggesting the complex formation. Most of the complexes showed a particle size of less than 200 nm, which is considered an appropriate size for in vitro siRNA delivery. A number of …


Targeted Aav5-Smad7 Gene Therapy Inhibits Corneal Scarring In Vivo, Suneel Gupta, Jason T. Rodier, Ajay Sharma, Elizabeth A. Giuliano, Prashant R. Sinha, Nathan P. Hesemann, Arkasubhra Ghosh, Rajiv R. Mohan Mar 2017

Targeted Aav5-Smad7 Gene Therapy Inhibits Corneal Scarring In Vivo, Suneel Gupta, Jason T. Rodier, Ajay Sharma, Elizabeth A. Giuliano, Prashant R. Sinha, Nathan P. Hesemann, Arkasubhra Ghosh, Rajiv R. Mohan

Pharmacy Faculty Articles and Research

Corneal scarring is due to aberrant activity of the transforming growth factor β (TGFβ) signaling pathway following traumatic, mechanical, infectious, or surgical injury. Altered TGFβ signaling cascade leads to downstream Smad (Suppressor of mothers against decapentaplegic) protein-mediated signaling events that regulate expression of extracellular matrix and myogenic proteins. These events lead to transdifferentiation of keratocytes into myofibroblasts through fibroblasts and often results in permanent corneal scarring. Hence, therapeutic targets that reduce transdifferentiation of fibroblasts into myofibroblasts may provide a clinically relevant approach to treat corneal fibrosis and improve long-term visual outcomes. Smad7 protein regulates the functional effects of TGFβ signaling …