Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Genetics

Identification Of Two Gene Clusters And A Transcriptional Regulator Required For Pseudomonas Aeruginosa Glycine Betaine Catabolism, Matthew J. Wargo, Benjamin S. Szwergold, Deborah A. Hogan Oct 2008

Identification Of Two Gene Clusters And A Transcriptional Regulator Required For Pseudomonas Aeruginosa Glycine Betaine Catabolism, Matthew J. Wargo, Benjamin S. Szwergold, Deborah A. Hogan

Dartmouth Scholarship

Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-(13)C-labeled choline …


Cif Is Negatively Regulated By The Tetr Family Repressor Cifr, Daniel P. Maceachran, Bruce A. Stanton, George A. O'Toole May 2008

Cif Is Negatively Regulated By The Tetr Family Repressor Cifr, Daniel P. Maceachran, Bruce A. Stanton, George A. O'Toole

Dartmouth Scholarship

We previously reported that the novel Pseudomonas aeruginosa toxin Cif is capable of decreasing apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR). We further demonstrated that Cif is capable of degrading the synthetic epoxide hydrolase (EH) substrate S-NEPC [(2S,3S)-trans-3-phenyl-2-oxiranylmethyl 4-nitrophenol carbonate], suggesting that Cif may be reducing apical membrane expression of CFTR via its EH activity. Here we report that Cif is capable of degrading the xenobiotic epoxide epibromohydrin (EBH) to its vicinal diol 3-bromo-1,2-propanediol. We also demonstrate that this epoxide is a potent inducer of cif gene expression. We show that the predicted TetR family transcriptional …


Multiple Forms Of Atypical Rearrangements Generating Supernumerary Derivative Chromosome 15., Nicholas J Wang, Alexander S Parokonny, Karen N Thatcher, Jennette Driscoll, Barbara M Malone, Naghmeh Dorrani, Marian Sigman, Janine M Lasalle, N Carolyn Schanen Jan 2008

Multiple Forms Of Atypical Rearrangements Generating Supernumerary Derivative Chromosome 15., Nicholas J Wang, Alexander S Parokonny, Karen N Thatcher, Jennette Driscoll, Barbara M Malone, Naghmeh Dorrani, Marian Sigman, Janine M Lasalle, N Carolyn Schanen

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: Maternally-derived duplications that include the imprinted region on the proximal long arm of chromosome 15 underlie a complex neurobehavioral disorder characterized by cognitive impairment, seizures and a substantial risk for autism spectrum disorders1. The duplications most often take the form of a supernumerary pseudodicentric derivative chromosome 15 [der(15)] that has been called inverted duplication 15 or isodicentric 15 [idic(15)], although interstitial rearrangements also occur. Similar to the deletions found in most cases of Angelman and Prader Willi syndrome, the duplications appear to be mediated by unequal homologous recombination involving low copy repeats (LCR) that are found clustered in the …


Large Scale Variation In Enterococcus Faecalis Illustrated By The Genome Analysis Of Strain Og1rf, Agathe Bourgogne, Danielle A Garsin, Xiang Qin, Kavindra V Singh, Jouko Sillanpaa, Shailaja Yerrapragada, Yan Ding, Shannon Dugan-Rocha, Christian Buhay, Hua Shen, Guan Chen, Gabrielle Williams, Donna Muzny, Arash Maadani, Kristina A Fox, Jason Gioia, Lei Chen, Yue Shang, Cesar A Arias, Sreedhar R Nallapareddy, Meng Zhao, Vittal P Prakash, Shahreen Chowdhury, Huaiyang Jiang, Richard A Gibbs, Barbara E Murray, Sarah K Highlander, George M Weinstock Jan 2008

Large Scale Variation In Enterococcus Faecalis Illustrated By The Genome Analysis Of Strain Og1rf, Agathe Bourgogne, Danielle A Garsin, Xiang Qin, Kavindra V Singh, Jouko Sillanpaa, Shailaja Yerrapragada, Yan Ding, Shannon Dugan-Rocha, Christian Buhay, Hua Shen, Guan Chen, Gabrielle Williams, Donna Muzny, Arash Maadani, Kristina A Fox, Jason Gioia, Lei Chen, Yue Shang, Cesar A Arias, Sreedhar R Nallapareddy, Meng Zhao, Vittal P Prakash, Shahreen Chowdhury, Huaiyang Jiang, Richard A Gibbs, Barbara E Murray, Sarah K Highlander, George M Weinstock

Journal Articles

BACKGROUND: Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies.

RESULTS: The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence …