Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Genetics

Small Rna Teg49 Is Derived From A Sara Transcript And Regulates Virulence Genes Independent Of Sara In Staphylococcus Aureus, Adhar Manna, Samin Kim, Liviu Cengher, Anna Corvaglia, Stefano Leo, Patrice Francois, Ambrose L. Cheung Nov 2017

Small Rna Teg49 Is Derived From A Sara Transcript And Regulates Virulence Genes Independent Of Sara In Staphylococcus Aureus, Adhar Manna, Samin Kim, Liviu Cengher, Anna Corvaglia, Stefano Leo, Patrice Francois, Ambrose L. Cheung

Dartmouth Scholarship

Expression of virulence factors in Staphylococcus aureus is regulated by a wide range of transcriptional regulators, including proteins and small RNAs (sRNAs), at the level of transcription and/or translation. The sarA locus consists of three overlapping transcripts generated from three distinct promoters, all containing the sarA open reading frame (ORF). The 5= untranslated regions (UTRs) of these transcripts contain three separate regions 711, 409, and 146 nucleotides (nt) upstream of the sarA translation start, the functions of which remain unknown. Re- cent transcriptome-sequencing (RNA-Seq) analysis and subsequent characterization indicated that two sRNAs, teg49 and teg48, are processed and likely produced …


Characterization Of Vibrio Cholerae O1 El Tor Biotype Variant Clinical Isolates From Bangladesh And Haiti, Including A Molecular Genetic Analysis Of Virulence Genes, Mike S. Son, Christina J. Megli, Gabriela Kovacikova, Firdausi Qadri, Ronald K. Taylor Aug 2011

Characterization Of Vibrio Cholerae O1 El Tor Biotype Variant Clinical Isolates From Bangladesh And Haiti, Including A Molecular Genetic Analysis Of Virulence Genes, Mike S. Son, Christina J. Megli, Gabriela Kovacikova, Firdausi Qadri, Ronald K. Taylor

Dartmouth Scholarship

Vibrio cholerae serogroup O1, the causative agent of the diarrheal disease cholera, is divided into two biotypes: classical and El Tor. Both biotypes produce the major virulence factors toxin-coregulated pilus (TCP) and cholera toxin (CT). Although possessing genotypic and phenotypic differences, El Tor biotype strains displaying classical biotype traits have been reported and subsequently were dubbed El Tor variants. Of particular interest are reports of El Tor variants that produce various levels of CT, including levels typical of classical biotype strains. Here, we report the characterization of 10 clinical isolates from the International Centre for Diarrhoeal Disease Research, Bangladesh, and …


The Virulence Activator Apha Links Quorum Sensing To Pathogenesis And Physiology In Vibrio Cholerae By Repressing The Expression Of A Penicillin Amidase Gene On The Small Chromosome, Gabriela Kovacikova, Wei Lin, Karen Skorupski Aug 2003

The Virulence Activator Apha Links Quorum Sensing To Pathogenesis And Physiology In Vibrio Cholerae By Repressing The Expression Of A Penicillin Amidase Gene On The Small Chromosome, Gabriela Kovacikova, Wei Lin, Karen Skorupski

Dartmouth Scholarship

Activation of the tcpPH promoter on the Vibrio pathogenicity island by AphA and AphB initiates the Vibrio cholerae virulence cascade and is regulated by quorum sensing through the repressive action of HapR on aphA expression. To further understand how the chromosomally encoded AphA protein activates tcpPH expression, site-directed mutagenesis was used to identify the base pairs critical for AphA binding and transcriptional activation. This analysis revealed a region of partial dyad symmetry, TATGCA-N6-TNCNNA, that is important for both of these activities. Searching the V. cholerae genome for this binding site permitted the identification of a second one upstream of a …


Saru, A Sara Homolog, Is Repressed By Sart And Regulates Virulence Genes In Staphylococcus Aureus, Adhar C. Manna, Ambrose L. Cheung Jan 2003

Saru, A Sara Homolog, Is Repressed By Sart And Regulates Virulence Genes In Staphylococcus Aureus, Adhar C. Manna, Ambrose L. Cheung

Dartmouth Scholarship

In searching the Staphylococcus aureus genome, we previously identified sarT, a homolog of sarA, which encodes a repressor for alpha-hemolysin synthesis. Adjacent but transcribed divergently to sarT is sarU, which encodes a 247-residue polypeptide, almost twice the length of SarA. Sequence alignment disclosed that SarU, like SarS, which is another SarA homolog, could be envisioned as a molecule with two halves, with each half being homologous to SarA. SarU, as a member of the SarA family proteins, disclosed conservation of basic residues within the helix-turn-helix motif and within the beta hairpin loop, two putative DNA binding domains within this protein …