Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Medical Genetics

Small Rna Teg49 Is Derived From A Sara Transcript And Regulates Virulence Genes Independent Of Sara In Staphylococcus Aureus, Adhar Manna, Samin Kim, Liviu Cengher, Anna Corvaglia, Stefano Leo, Patrice Francois, Ambrose L. Cheung Nov 2017

Small Rna Teg49 Is Derived From A Sara Transcript And Regulates Virulence Genes Independent Of Sara In Staphylococcus Aureus, Adhar Manna, Samin Kim, Liviu Cengher, Anna Corvaglia, Stefano Leo, Patrice Francois, Ambrose L. Cheung

Dartmouth Scholarship

Expression of virulence factors in Staphylococcus aureus is regulated by a wide range of transcriptional regulators, including proteins and small RNAs (sRNAs), at the level of transcription and/or translation. The sarA locus consists of three overlapping transcripts generated from three distinct promoters, all containing the sarA open reading frame (ORF). The 5= untranslated regions (UTRs) of these transcripts contain three separate regions 711, 409, and 146 nucleotides (nt) upstream of the sarA translation start, the functions of which remain unknown. Re- cent transcriptome-sequencing (RNA-Seq) analysis and subsequent characterization indicated that two sRNAs, teg49 and teg48, are processed and likely produced …


Interconnections Between Sigma B, Agr, And Proteolytic Activity In Staphylococcus Aureus Biofilm Maturation, Katherine J. Lauderdale, Blaise R. Boles, Ambrose L. Cheung, Alexander R. Horswill Feb 2009

Interconnections Between Sigma B, Agr, And Proteolytic Activity In Staphylococcus Aureus Biofilm Maturation, Katherine J. Lauderdale, Blaise R. Boles, Ambrose L. Cheung, Alexander R. Horswill

Dartmouth Scholarship

Staphylococcus aureus is a proficient biofilm former on host tissues and medical implants. We mutagenized S. aureus strain SH1000 to identify loci essential for ica-independent mechanisms of biofilm maturation and identified multiple insertions in the rsbUVW-sigB operon. Following construction and characterization of a sigB deletion, we determined that the biofilm phenotype was due to a lack of sigma factor B (SigB) activity. The phenotype was conserved in a sigB mutant of USA300 strain LAC, a well-studied community-associated methicillin-resistant S. aureus isolate. We determined that agr RNAIII levels were elevated in the sigB mutants, and high levels of RNAIII expression are …


Genetic Evidence For An Alternative Citrate-Dependent Biofilm Formation Pathway In Staphylococcus Aureus That Is Dependent On Fibronectin Binding Proteins And The Grars Two-Component Regulatory System, Robert M. Q. Shanks, Michael A. Meehl, Kimberly M. Brothers, Raquel M. Martinez, Niles P. Donegan, Martha L. Graber, Ambrose L. Cheung, George A. O'Toole Mar 2008

Genetic Evidence For An Alternative Citrate-Dependent Biofilm Formation Pathway In Staphylococcus Aureus That Is Dependent On Fibronectin Binding Proteins And The Grars Two-Component Regulatory System, Robert M. Q. Shanks, Michael A. Meehl, Kimberly M. Brothers, Raquel M. Martinez, Niles P. Donegan, Martha L. Graber, Ambrose L. Cheung, George A. O'Toole

Dartmouth Scholarship

We reported previously that low concentrations of sodium citrate strongly promote biofilm formation by Staphylococcus aureus laboratory strains and clinical isolates. Here, we show that citrate promotes biofilm formation via stimulating both cell-to-surface and cell-to-cell interactions. Citrate-stimulated biofilm formation is independent of the ica locus, and in fact, citrate represses polysaccharide adhesin production. We show that fibronectin binding proteins FnbA and FnbB and the global regulator SarA, which positively regulates fnbA and fnbB gene expression, are required for citrate's positive effects on biofilm formation, and citrate also stimulates fnbA and fnbB gene expression. Biofilm formation is also stimulated by several …


Saru, A Sara Homolog, Is Repressed By Sart And Regulates Virulence Genes In Staphylococcus Aureus, Adhar C. Manna, Ambrose L. Cheung Jan 2003

Saru, A Sara Homolog, Is Repressed By Sart And Regulates Virulence Genes In Staphylococcus Aureus, Adhar C. Manna, Ambrose L. Cheung

Dartmouth Scholarship

In searching the Staphylococcus aureus genome, we previously identified sarT, a homolog of sarA, which encodes a repressor for alpha-hemolysin synthesis. Adjacent but transcribed divergently to sarT is sarU, which encodes a 247-residue polypeptide, almost twice the length of SarA. Sequence alignment disclosed that SarU, like SarS, which is another SarA homolog, could be envisioned as a molecule with two halves, with each half being homologous to SarA. SarU, as a member of the SarA family proteins, disclosed conservation of basic residues within the helix-turn-helix motif and within the beta hairpin loop, two putative DNA binding domains within this protein …


Evaluation Of A Tetracycline-Inducible Promoter In Staphylococcus Aureus In Vitro And In Vivo And Its Application In Demonstrating The Role Of Sigb In Microcolony Formation, B. T. Bateman, N. P. Donegan, T. M. Jarry, M. Palma Dec 2001

Evaluation Of A Tetracycline-Inducible Promoter In Staphylococcus Aureus In Vitro And In Vivo And Its Application In Demonstrating The Role Of Sigb In Microcolony Formation, B. T. Bateman, N. P. Donegan, T. M. Jarry, M. Palma

Dartmouth Scholarship

An inducible promoter system provides a powerful tool for studying the genetic basis for virulence. A variety of inducible systems have been used in other organisms, including pXyl-xylR-inducible promoter, the pSpac-lacI system, and the arabinose-inducible PBAD promoter, but each of these systems has limitations in its application to Staphylococcus aureus. In this study, we demonstrated the efficacy of a tetracycline-inducible promoter system in inducing gene expression in S. aureus in vitro and inside epithelial cells as well as in an animal model of infection. Using the xyl/tetO promoter::gfpuvr fusion carried on a shuttle …


Sart, A Repressor Of Α-Hemolysin In Staphylococcus Aureus, Katherine A. Schmidt, Adhar C. Manna, Steven Gill, Ambrose L. Cheung Aug 2001

Sart, A Repressor Of Α-Hemolysin In Staphylococcus Aureus, Katherine A. Schmidt, Adhar C. Manna, Steven Gill, Ambrose L. Cheung

Dartmouth Scholarship

In searching the Staphylococcus aureus genome, we found several homologs to SarA. One of these genes, sarT, codes for a basic protein with 118 residues and a predicted molecular size of 16,096 Da. Northern blot analysis revealed that the expression of sarT was repressed by sarA and agr. An insertion sarT mutant generated in S. aureus RN6390 and 8325-4 backgrounds revealed minimal effect on the expression of sarR and sarA. The RNAIII level was notably increased in the sarT mutant, particularly in postexponential-phase cells, while the augmentative effect on RNAII was less. SarT repressed the expression of alpha-hemolysin, as determined …


Sars, A Sara Homolog Repressible By Agr, Is An Activator Of Protein A Synthesis In Staphylococcus Aureus, Ambrose L. Cheung, Katherine Schmidt, Brian Bateman, Adhar C. Manna Apr 2001

Sars, A Sara Homolog Repressible By Agr, Is An Activator Of Protein A Synthesis In Staphylococcus Aureus, Ambrose L. Cheung, Katherine Schmidt, Brian Bateman, Adhar C. Manna

Dartmouth Scholarship

The expression of protein A (spa) is repressed by global regulatory loci sarA and agr. Although SarA may directly bind to the spa promoter to downregulate spa expression, the mechanism by which agr represses spa expression is not clearly understood. In searching for SarA homologs in the partially released genome, we found a SarA homolog, encoding a 250-amino-acid protein designated SarS, upstream of the spa gene. The expression of sarS was almost undetectable in parental strain RN6390 but was highly expressed in agr and sarA mutants, strains normally expressing high level of protein A. Interestingly, protein A …


Characterization Of Sarr, A Modulator Of Sar Expression In Staphylococcus Aureus, Adhar Manna, Ambrose L. Cheung Feb 2001

Characterization Of Sarr, A Modulator Of Sar Expression In Staphylococcus Aureus, Adhar Manna, Ambrose L. Cheung

Dartmouth Scholarship

The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g., sar and agr). The sar locus is composed of three overlapping transcripts (sar P1, P3, and P2 transcripts from P1, P3, and P2 promoters, respectively), all encoding the 372-bp sarA gene. The level of SarA, the major regulatory protein, is partially controlled by the differential activation of sar promoters. We previously partially purified a ∼12 kDa protein with a DNA-specific column