Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Neoplasms

Dartmouth Scholarship

Tumor

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Medical Genetics

Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton Jan 2010

Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton

Dartmouth Scholarship

Most solid tumors are aneuploid, and it has been proposed that aneuploidy is the consequence of an elevated rate of chromosome missegregation in a process called chromosomal instability (CIN). However, the relationship of aneuploidy and CIN is unclear because the proliferation of cultured diploid cells is compromised by chromosome missegregation. The mechanism for this intolerance of nondiploid genomes is unknown. In this study, we show that in otherwise diploid human cells, chromosome missegregation causes a cell cycle delay with nuclear accumulation of the tumor suppressor p53 and the cyclin kinase inhibitor p21. Deletion of the p53 gene permits the accumulation …


Paracrine Sonic Hedgehog Signalling By Prostate Cancer Cells Induces Osteoblast Differentiation, Samantha M Zunich, Taneka Douglas, Maria Valdovinos, Tiffany Chang Mar 2009

Paracrine Sonic Hedgehog Signalling By Prostate Cancer Cells Induces Osteoblast Differentiation, Samantha M Zunich, Taneka Douglas, Maria Valdovinos, Tiffany Chang

Dartmouth Scholarship

Sonic hedgehog (Shh) and components of its signalling pathway have been identified in human prostate carcinoma and increased levels of their expression appear to correlate with disease progression and metastasis. The mechanism through which Shh signalling could promote metastasis in bone, the most common site for prostate carcinoma metastasis, has not yet been investigated. The present study determined the effect of Shh signalling between prostate cancer cells and pre-osteoblasts on osteoblast differentiation, a requisite process for new bone formation that characterizes prostate carcinoma metastasis.


Let-7 Expression Defines Two Differentiation Stages Of Cancer, Scott Shell, Sun-Mi Park, Amir Reza Radjabi, Robert Schickel, Emily Kistner, David Jewell Jul 2007

Let-7 Expression Defines Two Differentiation Stages Of Cancer, Scott Shell, Sun-Mi Park, Amir Reza Radjabi, Robert Schickel, Emily Kistner, David Jewell

Dartmouth Scholarship

The early phases of carcinogenesis resemble embryonic development, often involving the reexpression of embryonic mesenchymal genes. The NCI60 panel of human tumor cell lines can genetically be subdivided into two superclusters (SCs) that correspond to CD95 Type I and II cells. SC1 cells are characterized by a mesenchymal and SC2 cells by an epithelial gene signature, suggesting that SC1 cells represent less differentiated, advanced stages of cancer. miRNAs are small 20- to 22-nucleotide-long noncoding RNAs that inhibit gene expression at the posttranscriptional level. By performing miRNA expression analysis on 10 Type I and 10 Type II cells, we have determined …


Transgenic Cyclin E Triggers Dysplasia And Multiple Pulmonary Adenocarcinomas, Yan Ma, Steven Fiering, Candice Black, Xi Liu, Ziqiang Yuan, Vincent A. Memoli, David J. Robbins, Heather A. Bentley, Gregory J. Tsongalis, Eugene Demidenko, Sarah J. Freemantle, Ethan Dmitrovsky Mar 2007

Transgenic Cyclin E Triggers Dysplasia And Multiple Pulmonary Adenocarcinomas, Yan Ma, Steven Fiering, Candice Black, Xi Liu, Ziqiang Yuan, Vincent A. Memoli, David J. Robbins, Heather A. Bentley, Gregory J. Tsongalis, Eugene Demidenko, Sarah J. Freemantle, Ethan Dmitrovsky

Dartmouth Scholarship

Cyclin E is a critical G(1)-S cell cycle regulator aberrantly expressed in bronchial premalignancy and lung cancer. Cyclin E expression negatively affects lung cancer prognosis. Its role in lung carcinogenesis was explored. Retroviral cyclin E transduction promoted pulmonary epithelial cell growth, and small interfering RNA targeting of cyclin E repressed this growth. Murine transgenic lines were engineered to mimic aberrant cyclin E expression in the lung. Wild-type and proteasome degradation-resistant human cyclin E transgenic lines were independently driven by the human surfactant C (SP-C) promoter. Chromosome instability (CIN), pulmonary dysplasia, sonic hedgehog (Shh) pathway activation, adenocarcinomas, and metastases occurred. Notably, …