Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medical Genetics

Identification And Molecular Analysis Of Dna In Exosomes, Jena Tavormina Dec 2019

Identification And Molecular Analysis Of Dna In Exosomes, Jena Tavormina

Dissertations & Theses (Open Access)

Exosomes are heterogeneous nanoparticles 50-150nm in diameter. Exosomes contain many functional cargo components, such as protein, DNA, and RNA. While protein and RNA exosome content has been extensively studied, very little work has been done to characterize exosomal DNA. Here, we demonstrate that exosomal DNA is heterogeneous and its packaging into exosomes is dependent on the cell of origin. Furthermore, through a rigorous assessment of various isolation methods, we identify Size Exclusion Chromatography (SEC) as the best method for the isolation of exosomal DNA for downstream applications. Additionally, we evaluate the methylation status of exosomal DNA and demonstrate that exosomal …


N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers Aug 2018

N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias …


A Role For The Histone Deacetylase Hdac4 In The Life-Cycle Of Hiv-1-Based Vectors., Johanna A Smith, Jennifer Yeung, Gary D Kao, René Daniel Sep 2010

A Role For The Histone Deacetylase Hdac4 In The Life-Cycle Of Hiv-1-Based Vectors., Johanna A Smith, Jennifer Yeung, Gary D Kao, René Daniel

Department of Medicine Faculty Papers

HIV-1 integration is mediated by the HIV-1 integrase protein, which joins 3'-ends of viral DNA to host cell DNA. To complete the integration process, HIV-1 DNA has to be joined to host cell DNA also at the 5'-ends. This process is called post-integration repair (PIR). Integration and PIR involve a number of cellular co-factors. These proteins exhibit different degrees of involvement in integration and/or PIR. Some are required for efficient integration or PIR. On the other hand, some reduce the efficiency of integration. Finally, some are involved in integration site selection. We have studied the role of the histone deacetylase …


Insulin Receptor And Epidermal Growth Factor Receptor Dephosphorylation By Three Major Rat Liver Protein-Tyrosine Phosphatases Expressed In A Recombinant Bacterial System, Naotake Hashimoto, Wei-Ren Zhang, Barry J. Goldstein Jun 1992

Insulin Receptor And Epidermal Growth Factor Receptor Dephosphorylation By Three Major Rat Liver Protein-Tyrosine Phosphatases Expressed In A Recombinant Bacterial System, Naotake Hashimoto, Wei-Ren Zhang, Barry J. Goldstein

Department of Medicine Faculty Papers

Protein-tyrosine phosphatases (PTPases) play an essential role in the regulation of signal transduction mediated by reversible protein-tyrosine phosphorylation. In order to characterize individual rat hepatic PTPases that might have specificity for autophosphorylated receptor tyrosine kinases, we isolated cDNA segments encoding three PTPases (PTPase 1B, LAR and LRP) that are expressed in insulin-sensitive liver and skeletal muscle tissue, and evaluated their catalytic activity in vitro. The intrinsic PTPase activities of the full-length PTPase 1B protein and the cytoplasmic domains of LAR and LRP were studied by expression of recombinant cDNA constructs in the inducible bacterial vector pKK233-2 using extracts of …


Identification Of Persistent Defects In Insulin Receptor Structure And Function In Capillary Endothelial Cells From Diabetic Rats, Ching Fai Kwok, Barry J. Goldstein, Dirk Muller-Wieland, Tian-Shing Lee, C. Ronald Kahn, George L. King Jan 1989

Identification Of Persistent Defects In Insulin Receptor Structure And Function In Capillary Endothelial Cells From Diabetic Rats, Ching Fai Kwok, Barry J. Goldstein, Dirk Muller-Wieland, Tian-Shing Lee, C. Ronald Kahn, George L. King

Department of Medicine Faculty Papers

Insulin actions and receptors were studied in capillary endothelial cells cultured from diabetic BB rats and their nondiabetic colony mates. The endothelial cells from diabetic rats of 2 mo duration had persistent biological and biochemical defects in culture. Compared with normal rats, endothelial cells from diabetic rats grew 44% more slowly. Binding studies of insulin and insulin-like growth factor I (IGF-I) showed that cells from diabetic rats had 50% decrease of insulin receptor binding (nondiabetic: 4.6 +/- 0.7; diabetic: 2.6 +/- 0.4% per milligram protein, P < 0.01), which was caused by a 50% decrease in the number of binding sites per milligram protein, whereas IGF-I binding was not changed. Insulin stimulation of 2-deoxy-glucose uptake and alpha-aminoisobutyric acid uptake were also severely impaired with a 80-90% decrease in maximal stimulation, in parallel with a 62% decrease in insulin-stimulated autophosphorylation (P < 0.05). 125I-insulin cross-linking revealed an 140-kD alpha subunit of the insulin receptor similar to …