Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Medical Genetics

Transcription Factor Binding Profiles Reveal Cyclic Expression Of Human Protein-Coding Genes And Non-Coding Rnas, Chao Cheng, Matthew Ung, Gavin D. Grant, Michael L. Whitfield Jul 2013

Transcription Factor Binding Profiles Reveal Cyclic Expression Of Human Protein-Coding Genes And Non-Coding Rnas, Chao Cheng, Matthew Ung, Gavin D. Grant, Michael L. Whitfield

Dartmouth Scholarship

Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and …


Scfslimb Ubiquitin Ligase Suppresses Condensin Ii–Mediated Nuclear Reorganization By Degrading Cap-H2, Daniel W. Buster, Scott G. Daniel, Huy Q. Nguyen, Sarah L. Windler, Lara C. Skwarek, Maureen Peterson Jan 2013

Scfslimb Ubiquitin Ligase Suppresses Condensin Ii–Mediated Nuclear Reorganization By Degrading Cap-H2, Daniel W. Buster, Scott G. Daniel, Huy Q. Nguyen, Sarah L. Windler, Lara C. Skwarek, Maureen Peterson

Dartmouth Scholarship

Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear. Here, we report that condensin II is inactivated when its subunit Cap-H2 is targeted for degradation by the SCF(Slimb) ubiquitin ligase complex and that disruption of this process dramatically changed interphase chromatin organization. Inhibition of SCF(Slimb) function reorganized interphase chromosomes into dense, compact domains and disrupted …


Chromosome Missegregation In Human Cells Arises Through Specific Types Of Kinetochore–Microtubule Attachment Errors, Sarah L. Thompson, Duane A. Compton Nov 2011

Chromosome Missegregation In Human Cells Arises Through Specific Types Of Kinetochore–Microtubule Attachment Errors, Sarah L. Thompson, Duane A. Compton

Dartmouth Scholarship

Most solid tumors are aneuploid, and many missegregate chromosomes at high rates in a phenomenon called chromosomal instability (CIN). CIN reflects the erosion of mitotic fidelity, and it correlates with poor patient prognosis and drug resistance. The most common mechanism causing CIN is the persistence of improper kinetochore–microtubule attachments called merotely. Chromosomes with merotelic kinetochores often manifest as lagging chromosomes in anaphase, suggesting that lagging chromosomes fail to segregate properly. However, it remains unknown whether the lagging chromosomes observed in anaphase segregate to the correct or incorrect daughter cell. To address this question, we tracked the segregation of a single …


Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton Jan 2010

Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton

Dartmouth Scholarship

Most solid tumors are aneuploid, and it has been proposed that aneuploidy is the consequence of an elevated rate of chromosome missegregation in a process called chromosomal instability (CIN). However, the relationship of aneuploidy and CIN is unclear because the proliferation of cultured diploid cells is compromised by chromosome missegregation. The mechanism for this intolerance of nondiploid genomes is unknown. In this study, we show that in otherwise diploid human cells, chromosome missegregation causes a cell cycle delay with nuclear accumulation of the tumor suppressor p53 and the cyclin kinase inhibitor p21. Deletion of the p53 gene permits the accumulation …


Cpg Hypomethylation In A Large Domain Encompassing The Embryonic Β-Like Globin Genes In Primitive Erythrocytes, Mei Hsu, Rodwell R. Mabaera, Christopher H. Lowrey, David I. K. Martin, Steven Fiering Apr 2007

Cpg Hypomethylation In A Large Domain Encompassing The Embryonic Β-Like Globin Genes In Primitive Erythrocytes, Mei Hsu, Rodwell R. Mabaera, Christopher H. Lowrey, David I. K. Martin, Steven Fiering

Dartmouth Scholarship

There is little evidence addressing the role of CpG methylation in transcriptional control of genes that do not contain CpG islands. This is reflected in the ongoing debate about whether CpG methylation merely suppresses retroelements or if it also plays a role in developmental and tissue-specific gene regulation. The genes of the β-globin locus are an important model of mammalian developmental gene regulation and do not contain CpG islands. We have analyzed the methylation status of regions in the murine β-like globin locus in uncultured primitive and definitive erythroblasts and other cultured primary and transformed cell types. A large (∼20-kb) …


The Myc Transactivation Domain Promotes Global Phosphorylation Of The Rna Polymerase Ii Carboxy-Terminal Domain Independently Of Direct Dna Binding, Victoria H. Cowling, Michael D. Cole Jan 2007

The Myc Transactivation Domain Promotes Global Phosphorylation Of The Rna Polymerase Ii Carboxy-Terminal Domain Independently Of Direct Dna Binding, Victoria H. Cowling, Michael D. Cole

Dartmouth Scholarship

Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc−/− fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters …


The Caenorhabditis Elegans Heterochronic Regulator Lin-14 Is A Novel Transcription Factor That Controls The Developmental Timing Of Transcription From The Insulin/Insulin-Like Growth Factor Gene Ins-33 By Direct Dna Binding, Marta Hristova, Darcy Birse, Yang Hong, Victor Ambros Dec 2005

The Caenorhabditis Elegans Heterochronic Regulator Lin-14 Is A Novel Transcription Factor That Controls The Developmental Timing Of Transcription From The Insulin/Insulin-Like Growth Factor Gene Ins-33 By Direct Dna Binding, Marta Hristova, Darcy Birse, Yang Hong, Victor Ambros

Dartmouth Scholarship

A temporal gradient of the novel nuclear protein LIN-14 specifies the timing and sequence of stage-specific developmental events in Caenorhabditis elegans. The profound effects of lin-14 mutations on worm development suggest that LIN-14 directly or indirectly regulates stage-specific gene expression. We show that LIN-14 can associate with chromatin in vivo and has in vitro DNA binding activity. A bacterially expressed C-terminal domain of LIN-14 was used to select DNA sequences that contain a putative consensus binding site from a pool of randomized double-stranded oligonucleotides. To identify candidates for genes directly regulated by lin-14, we employed DNA microarray hybridization to compare …


Erythroid Cell-Specific Α-Globin Gene Regulation By The Cp2 Transcription Factor Family, Ho C. Kang, Jui Hyung Chae, Yeon H. Lee, Mi-Ae Park, June Ho Shin, Sung-Hyun Kim, Sang-Kyu Ye, Yoon Shin Cho, Steven Fiering, Chul Geun Kim Jul 2005

Erythroid Cell-Specific Α-Globin Gene Regulation By The Cp2 Transcription Factor Family, Ho C. Kang, Jui Hyung Chae, Yeon H. Lee, Mi-Ae Park, June Ho Shin, Sung-Hyun Kim, Sang-Kyu Ye, Yoon Shin Cho, Steven Fiering, Chul Geun Kim

Dartmouth Scholarship

We previously demonstrated that ubiquitously expressed CP2c exerts potent erythroid-specific transactivation of alpha-globin through an unknown mechanism. This mechanism is reported here to involve specific CP2 splice variants and protein inhibitor of activated STAT1 (PIAS1). We identify a novel murine splice isoform of CP2, CP2b, which is identical to CP2a except that it has an additional 36 amino acids encoded by an extra exon. CP2b has an erythroid cell-specific transcriptional activation domain, which requires the extra exon and can form heteromeric complexes with other CP2 isoforms, but lacks the DNA binding activity found in CP2a and CP2c. Transcriptional activation of …


Transcriptional Interference By Independently Regulated Genes Occurs In Any Relative Arrangement Of The Genes And Is Influenced By Chromosomal Integration Position, Susan K. Eszterhas, Eric E. Bouhassira, David I. K. Martin, Steven Fiering Jan 2002

Transcriptional Interference By Independently Regulated Genes Occurs In Any Relative Arrangement Of The Genes And Is Influenced By Chromosomal Integration Position, Susan K. Eszterhas, Eric E. Bouhassira, David I. K. Martin, Steven Fiering

Dartmouth Scholarship

Transcriptional interference is the influence, generally suppressive, of one active transcriptional unit on another unit linked in cis. Its wide occurrence in experimental systems suggests that it may also influence transcription in many loci, but little is known about its precise nature or underlying mechanisms. Here we report a study of the interaction of two nearly identical transcription units juxtaposed in various arrangements. Each reporter gene in the constructs has its own promoter and enhancer and a strong polyadenylation signal. We used recombinase-mediated cassette exchange (RMCE) to insert the constructs into previously tagged genomic sites in cultured cells. This …


Use Of Yeast Artificial Chromosomes (Yacs) For Studying Control Of Gene Expression: Correct Regulation Of The Genes Of A Human Beta-Globin Locus Yac Following Transfer To Mouse Erythroleukemia Cell Lines., Kenneth Peterson, Galynn Zitnik, Clare Huxley, Christopher Lowrey Dec 1993

Use Of Yeast Artificial Chromosomes (Yacs) For Studying Control Of Gene Expression: Correct Regulation Of The Genes Of A Human Beta-Globin Locus Yac Following Transfer To Mouse Erythroleukemia Cell Lines., Kenneth Peterson, Galynn Zitnik, Clare Huxley, Christopher Lowrey

Dartmouth Scholarship

We demonstrate that transfer of a yeast artificial chromosome (YAC) containing 230 kb of the human beta-globin locus into mouse erythroleukemia cells by fusion results in correct developmental regulation of the human beta-like globin genes. Additionally, we show that early after hybrid formation, human embryonic epsilon- and fetal gamma-globin genes are coexpressed with the adult beta gene but that after 10-20 weeks in culture, globin gene expression switches to predominantly adult. Thus, in contrast to shorter gene constructs, the globin genes of the beta-globin locus YAC are regulated like the chromosomal globin genes. These results indicate that transfer of YACs …


Fine-Structure Analysis Of The Processing And Polyadenylation Region Of The Herpes Simplex Virus Type 1 Thymidine Kinase Gene By Using Linker Scanning, Internal Deletion, And Insertion Mutations., Fang Zhang, Roger M. Denome, Charles N. Cole Dec 1986

Fine-Structure Analysis Of The Processing And Polyadenylation Region Of The Herpes Simplex Virus Type 1 Thymidine Kinase Gene By Using Linker Scanning, Internal Deletion, And Insertion Mutations., Fang Zhang, Roger M. Denome, Charles N. Cole

Dartmouth Scholarship

Most eucaryotic mRNAs are polyadenylated. In higher eucaryotes, the sequence AATAAA is located 7 to 30 base pairs (bp) upstream from the site of processing and polyadenylation and is a critical part of the signal for processing and polyadenylation. Efficient cleavage and polyadenylation also require sequences downstream of polyadenylation sites. The herpes simplex virus type 1 thymidine kinase (tk) gene contains two copies of the AATAAA hexanucleotide and a GT box (18 of 19 consecutive residues are G or T) previously shown to be required for efficient processing and polyadenylation of tk mRNA (C. N. Cole and T. P. Stacy, …


Identification Of Sequences In The Herpes Simplex Virus Thymidine Kinase Gene Required For Efficient Processing And Polyadenylation., Charles N. Cole, Terryl P. Stacy Aug 1985

Identification Of Sequences In The Herpes Simplex Virus Thymidine Kinase Gene Required For Efficient Processing And Polyadenylation., Charles N. Cole, Terryl P. Stacy

Dartmouth Scholarship

The herpes simplex virus (HSV) type 1 thymidine kinase gene (tk) was resected from its 3' end with BAL 31 exonuclease. Two sets of plasmids were isolated that lacked information distal to the two copies of the hexanucleotide 5'-AATAAA-3' located at the 3' end of the HSV tk gene. The presence of a simian virus 40 origin of DNA replication in each plasmid facilitated analysis of patterns of transcription in transfected Cos-1 monkey cells. Transcription analyses were performed with an S1 nuclease protection assay. Efficient processing and polyadenylation at the normal site still occurred when all sequences more than 44 …