Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medical Genetics

Gene Expression Profiling Of Mapk Pathway Inhibitor Resistance In Cutaneous Melanoma: Can Bioinformatics Be Used To Select Better Melanoma Cell Lines?, Stephen Luebker Aug 2021

Gene Expression Profiling Of Mapk Pathway Inhibitor Resistance In Cutaneous Melanoma: Can Bioinformatics Be Used To Select Better Melanoma Cell Lines?, Stephen Luebker

Theses & Dissertations

Melanoma is the deadliest form of skin cancer, and incidence has continued to increase. Half of all melanomas have a BRAF V600E mutation and respond to MAPK pathway inhibitors, including BRAF inhibitor therapy or BRAF/MEK inhibitor combination therapy, but nearly all patients develop treatment resistance. Melanoma cell lines produce variable results as models of MAPK pathway inhibitor resistance. To better understand how the genomic similarity of a melanoma cell line to patient-derived tumors affects resistance mechanisms, differences in DNA mutations and copy-number alterations were compared between melanoma cell lines profiled by the Cancer Cell Line Encyclopedia and cutaneous melanoma tumors …


Genetic Mechanisms Of Transcriptional Regulation In Childhood Acute Lymphoblastic Leukemia, Xujie Zhao Apr 2021

Genetic Mechanisms Of Transcriptional Regulation In Childhood Acute Lymphoblastic Leukemia, Xujie Zhao

Theses and Dissertations (ETD)

Introduction. Advances in genomic profiling and sequencing studies have identified germline and somatic variations that are associated with childhood ALL, improving our understanding of the genetic basis of childhood acute lymphoblastic leukemia (ALL). Recent genome-wide association studies (GWAS) have identified germline genetic variations of ARID5B and, more recently, IGF2BP1 that are associated with susceptibility to ALL. Genome-wide sequencing studies also discovered a new ALL subtype characterized of ZNF384-mediated chromosomal translocations, providing new insights into genetic heterogeneity in childhood ALL. However, the underlying mechanism by which these genetic variants contribute to the transcriptional regulatory circuitries of ALL is still poorly understood. …


Investigating The Role Of Znf384 Rearrangements In Acute Leukemia, Kirsten Dickerson Feb 2021

Investigating The Role Of Znf384 Rearrangements In Acute Leukemia, Kirsten Dickerson

Theses and Dissertations (ETD)

Chromosomal rearrangements involving ZNF384 are the defining lesion in 5% of pediatric and adult B-cell acute lymphoblastic leukemia and tumors are characterized by aberrant myeloid marker expression. Additionally, ZNF384 rearrangements are the defining lesion in nearly half of pediatric B/myeloid mixed phenotype acute leukemia. These fusions juxtapose full-length ZNF384 to the N terminal portion of a diverse range of partners, most often, transcription factors or epigenetic modifiers. It has been shown that ZNF384-rearranged tumors have a distinct gene expression profile that is consistent between disease groups and N terminal partners. Genomic analyses of patient tumors has shown that ZNF384 fusions …