Open Access. Powered by Scholars. Published by Universities.®

Nervous System Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nervous System Diseases

Simultaneous Uplc–Ms/Ms Analysis Of Two Stable Isotope Labeled Versions Of Sucrose In Mouse Plasma And Brain Samples As Markers Of Blood-Brain Barrier Permeability And Brain Vascular Space, Ekram Ahmed Chowdhury, Saad Alqahtani, Raktima Bhattacharya, Reza Mehvar, Ulrich Bickel Dec 2017

Simultaneous Uplc–Ms/Ms Analysis Of Two Stable Isotope Labeled Versions Of Sucrose In Mouse Plasma And Brain Samples As Markers Of Blood-Brain Barrier Permeability And Brain Vascular Space, Ekram Ahmed Chowdhury, Saad Alqahtani, Raktima Bhattacharya, Reza Mehvar, Ulrich Bickel

Pharmacy Faculty Articles and Research

Blood Brain Barrier (BBB) permeability is frequently compromised in the course of diseases affecting the central nervous system (CNS). Sucrose is a low molecular weight, hydrophilic marker with low permeability at the naive BBB and therefore one of the widely used indicators of barrier integrity. Our laboratory recently developed a highly sensitive UPLC-MS/MS method for stable isotope labelled [13C12]sucrose in biological matrices. Correction of total brain concentration for contribution of intravascular space is required in such experiments in order to accurately measure BBB permeability, and it is often accomplished by vascular perfusion with buffer solutions prior to brain sampling. The …


Role Of Microglial Amylin Receptors In Mediating Beta Amyloid (Aβ)-Induced Inflammation, Wen Fu, Vlatka Vukojevic, Aarti Patel, Rania Soudy, David Mactavish, David Westaway, Kamaljit Kaur, Valeri Goncharuk, Jack Jhamandas Oct 2017

Role Of Microglial Amylin Receptors In Mediating Beta Amyloid (Aβ)-Induced Inflammation, Wen Fu, Vlatka Vukojevic, Aarti Patel, Rania Soudy, David Mactavish, David Westaway, Kamaljit Kaur, Valeri Goncharuk, Jack Jhamandas

Pharmacy Faculty Articles and Research

Background: Neuroinflammation in the brain consequent to activation of microglia is viewed as an important component of Alzheimer’s disease (AD) pathology. Amyloid beta (Aβ) protein is known to activate microglia and unleash an inflammatory cascade that eventually results in neuronal dysfunction and death. In this study, we sought to identify the presence of amylin receptors on human fetal and murine microglia and determine whether Aβ activation of the inflammasome complex and subsequent release of cytokines is mediated through these receptors.

Methods: The presence of dimeric components of the amylin receptor (calcitonin receptor and receptor activity modifying protein 3) …