Open Access. Powered by Scholars. Published by Universities.®

Cardiovascular Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cardiovascular Diseases

Environmental Regulation Of The Heart: The Role Of Non-Coding Rna And Epigenetics In Influencing Mitochondrial And Cellular Health, Quincy Alexander Hathaway Jan 2019

Environmental Regulation Of The Heart: The Role Of Non-Coding Rna And Epigenetics In Influencing Mitochondrial And Cellular Health, Quincy Alexander Hathaway

Graduate Theses, Dissertations, and Problem Reports

The mitochondrion, a small but ubiquitously distributed organelle in the cell, continues to be the focus of many disease pathogeneses, tissue and organ dysfunctions, and other morbidities that occur throughout the body. The purpose of this work was to understand how cardiac mitochondrion are altered in disease and pathological states, specifically in their adaptation to environmentally stimulated regulatory networks, such as epigenetic modifications and promotion/inhibition of non-coding RNAs. Acute stress to mitochondrial regulation (inhalation toxicology) as well as chronic (type 2 diabetes mellitus) was examined. Using a FVB transgenic microRNA-378a mouse knockout model, the cardiovascular impact derived from altering the …


Role Of Ataxia Telangiectasia Mutated Kinase In The Healing Process Of The Heart Following Myocardial Infarction, Laura L. Daniel May 2015

Role Of Ataxia Telangiectasia Mutated Kinase In The Healing Process Of The Heart Following Myocardial Infarction, Laura L. Daniel

Electronic Theses and Dissertations

Ataxia telangiectasia (AT), caused by mutations in the gene encoding ataxia telangiectasia mutated kinase (ATM), is a rare autosomal recessive disorder. AT individuals exhibit neuronal degeneration and are predisposed to cancer. Carriers of this disorder are predisposed to cancer and ischemic heart disease. Heart disease, mostly due to myocardial infarction (MI), is a leading cause of death in the US. Following MI, release of catecholamines in the heart stimulates β- adrenergic receptors (β-AR). Our lab has shown that β-AR stimulation increases ATM expression in the heart and myocytes, and ATM plays an important role in β-AR-stimulated myocardial remodeling with effects …