Open Access. Powered by Scholars. Published by Universities.®

Bacterial Infections and Mycoses Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Bacterial Infections and Mycoses

A Nmr Experiment For Simultaneous Correlations Of Valine And Leucine/Isoleucine Methyls With Carbonyl Chemical Shifts In Proteins, Vitali Tugarinov, Vincenzo Venditti, G. Marius Clore Jan 2014

A Nmr Experiment For Simultaneous Correlations Of Valine And Leucine/Isoleucine Methyls With Carbonyl Chemical Shifts In Proteins, Vitali Tugarinov, Vincenzo Venditti, G. Marius Clore

Vincenzo Venditti

A methyl-detected ‘out-and-back’ NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ileδ1, Leuδ and Valγ (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of 13Cα, 13Cβ and 13CO are known from prior NMR studies and where some losses in …


Structural Basis For Enzyme I Inhibition By Α-Ketoglutarate, Vincenzo Venditti, Rodolfo Ghirlando, G. Marius Clore Jan 2013

Structural Basis For Enzyme I Inhibition By Α-Ketoglutarate, Vincenzo Venditti, Rodolfo Ghirlando, G. Marius Clore

Vincenzo Venditti

Creating new bacterial strains in which carbon and nitrogen metabolism are uncoupled is potentially very useful for optimizing yields of microbial produced chemicals from renewable carbon sources. However, the mechanisms that balance carbon and nitrogen consumption in bacteria are poorly understood. Recently, α-ketoglutarate (αKG), the carbon substrate for ammonia assimilation, has been observed to inhibit Escherichia coli enzyme I (EI), the first component of the bacterial phosphotransferase system (PTS), thereby providing a direct biochemical link between central carbon and nitrogen metabolism. Here we investigate the EI-αKG interaction by NMR and enzymatic assays. We show that αKG binds with a KD …


Structure, Dynamics And Biophysics Of The Cytoplasmic Protein–Protein Complexes Of The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System, Vincenzo Venditti Jan 2013

Structure, Dynamics And Biophysics Of The Cytoplasmic Protein–Protein Complexes Of The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System, Vincenzo Venditti

Vincenzo Venditti

The bacterial phosphotransferase system (PTS) couples phosphoryl transfer, via a series of bimolecular protein–protein interactions, to sugar transport across the membrane. The multitude of complexes in the PTS provides a paradigm for studying protein interactions, and for understanding how the same binding surface can specifically recognize a diverse array of targets. Fifteen years of work aimed at solving the solution structures of all soluble protein–protein complexes of the PTS has served as a test bed for developing NMR and integrated hybrid approaches to study larger complexes in solution and to probe transient, spectroscopically invisible states, including encounter complexes. We review …


Conformational Selection And Substrate Binding Regulate The Monomer/Dimer Equilibrium Of The C-Terminal Domain Of Escherichia Coli Enzyme I, Vincenzo Venditti, G. Marius Clore Jan 2012

Conformational Selection And Substrate Binding Regulate The Monomer/Dimer Equilibrium Of The C-Terminal Domain Of Escherichia Coli Enzyme I, Vincenzo Venditti, G. Marius Clore

Vincenzo Venditti

The bacterial phosphotransferase system (PTS) is a signal transduction pathway that couples phosphoryl transfer to active sugar transport across the cell membrane. The PTS is initiated by the binding of phosphoenolpyruvate (PEP) to the C-terminal domain (EIC) of enzyme I (EI), a highly conserved protein that is common to all sugar branches of the PTS. EIC exists in a dynamic monomer/dimer equilibrium that is modulated by ligand binding and is thought to regulate the overall PTS. Isolation of EIC has proven challenging, and conformational dynamics within the EIC domain during the catalytic cycle are still largely unknown. Here, we present …