Open Access. Powered by Scholars. Published by Universities.®

Complex Mixtures Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Complex Mixtures

Study Of Pharmaceutical Tablets Using Raman Mapping, Kyle Joseph Pauly May 2020

Study Of Pharmaceutical Tablets Using Raman Mapping, Kyle Joseph Pauly

Honors Theses

Covalent bonds are the strongest type of bonds holding molecules together. Based on the pattern of bonding of the molecule, the atoms associated with the bond will vibrate at a specific frequency. Utilizing vibrational spectroscopy, such as Raman spectroscopy, these unique vibrational frequencies can be used to detect the presence of analytes over a selected area. Furthermore, the intensities of the vibrational modes can be tracked to comparatively quantify the concentration of analytes at various locations. This is a method of great importance due to its ability to compare pharmaceutical tablets synthesized with different techniques. Here, the presence and concentration …


Target-Directed Biosynthetic Evolution: Redirecting Plant Evolution To Genomically Optimize A Plant’S Pharmacological Profile, Dustin Paul Brown Jan 2015

Target-Directed Biosynthetic Evolution: Redirecting Plant Evolution To Genomically Optimize A Plant’S Pharmacological Profile, Dustin Paul Brown

Theses and Dissertations--Neuroscience

The dissertation describes a novel method for plant drug discovery based on mutation and selection of plant cells. Despite the industry focus on chemical synthesis, plants remain a source of potent and complex bioactive metabolites. Many of these have evolved as defensive compounds targeted on key proteins in the CNS of herbivorous insects, for example the insect dopamine transporter (DAT). Because of homology with the human DAT protein some of these metabolites have high abuse potential, but others may be valuable in treating drug dependence. This dissertation redirects the evolution of a native Lobelia species toward metabolites with greater activity …