Open Access. Powered by Scholars. Published by Universities.®

Biological Factors Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biological Factors

Development Of A Decellularized Hydrogel Composite And Its Application In A Novel Model Of Disc-Associated Low Back Pain In Female Sprague Dawley Rats, David Lillyman Jul 2022

Development Of A Decellularized Hydrogel Composite And Its Application In A Novel Model Of Disc-Associated Low Back Pain In Female Sprague Dawley Rats, David Lillyman

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Chronic low back pain is a global socioeconomic crisis compounded by an absence of reliable, curative treatments. The predominant pathology associated with chronic low back pain is degeneration of intervertebral discs in the lumbar spine. During degeneration, nerves can sprout into the intervertebral disc tissue and be chronically subjected to inflammatory and mechanical stimuli, resulting in pain. Pain arising from the intervertebral disc, or disc-associated pain, is a complex, multi-faceted disorder which necessitates valid animal models to screen therapeutics and study pathomechanisms of pain.

While many research teams have created animal models of disc degeneration, the translation of these platforms …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …