Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

NYMC Faculty Publications

Discipline
Keyword
Publication Year

Articles 31 - 32 of 32

Full-Text Articles in Chemicals and Drugs

Direct And Indirect Excitation Of Laterodorsal Tegmental Neurons By Hypocretin/Orexin Peptides: Implications For Wakefulness And Narcolepsy, Sophie Burlet, Christopher Tyler, Christopher S. Leonard Apr 2002

Direct And Indirect Excitation Of Laterodorsal Tegmental Neurons By Hypocretin/Orexin Peptides: Implications For Wakefulness And Narcolepsy, Sophie Burlet, Christopher Tyler, Christopher S. Leonard

NYMC Faculty Publications

Compelling evidence links the recently discovered hypothalamic peptides Hypocretin/Orexin (Hcrt/Orx) to rapid eye movement sleep (REM) control and the sleep disorder narcolepsy, yet how they influence sleep-related systems is not well understood. We investigated the action of Hcrt/Orx on mesopontine cholinergic (MPCh) neurons of the laterodorsal tegmental nucleus (LDT), a target group whose function is altered in canine narcolepsy and appears pivotal for normal REM and wakefulness. Extracellular recordings from mouse brainstem slices revealed that Hcrt/Orx evoked prolonged firing of LDT neurons. Whole-cell recordings revealed that Hcrt/Orx had actions on both presynaptic neurons and at postsynaptic sites. Hcrt/Orx produced an …


Impaired Fast-Spiking, Suppressed Cortical Inhibition, And Increased Susceptibility To Seizures In Mice Lacking Kv3.2 K+ Channel Proteins, David Lau, Eleazar Vega-Saenz De Miera, Diego Contreras, Alan Chow, Richard Paylor, Christopher S. Leonard, Bernardo Rudy Dec 2000

Impaired Fast-Spiking, Suppressed Cortical Inhibition, And Increased Susceptibility To Seizures In Mice Lacking Kv3.2 K+ Channel Proteins, David Lau, Eleazar Vega-Saenz De Miera, Diego Contreras, Alan Chow, Richard Paylor, Christopher S. Leonard, Bernardo Rudy

NYMC Faculty Publications

Voltage-gated K(+) channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to -10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one …