Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Analytical, Diagnostic and Therapeutic Techniques and Equipment

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Protein Detection And Structural Characterization By Mass Spectrometry Using Supramolecular Assemblies And Small Molecules, Bo Zhao Oct 2019

Protein Detection And Structural Characterization By Mass Spectrometry Using Supramolecular Assemblies And Small Molecules, Bo Zhao

Doctoral Dissertations

Mass spectrometry (MS) has played an increasingly prominent role in proteomics and structure biology because it shows superior capabilities in identification, quantification and structural characterization of proteins. To realize its full potential in protein analysis, significant progress has been made in developing innovative techniques and reagents that can couple to MS detection. This dissertation demonstrates the use of polymeric supramolecular assemblies for enhanced protein detection in complex biological mixtures by MS. An amphiphilic random co-polymer scaffold is developed to form functional supramolecular assemblies for protein/ peptide enrichment. The influences of charge density and functional group pKa on host-guest interactions …


Micro-Spectroscopy Of Bio-Assemblies At The Single Cell Level, Jeslin Kera Jan 2017

Micro-Spectroscopy Of Bio-Assemblies At The Single Cell Level, Jeslin Kera

Honors Undergraduate Theses

In this thesis, we investigate biological molecules on a micron scale in the ultraviolet spectral region through the non-destructive confocal absorption microscopy. The setup involves a combination of confocal microscope with a UV light excitation beam to measure the optical absorption spectra with spatial resolution of 1.4 μm in the lateral and 3.6 μm in the axial direction. Confocal absorption microscopy has the benefits of requiring no labels and only low light intensity for excitation while providing a strong signal from the contrast generated by the attenuation of propagating light due to absorption. This enables spatially resolved measurements of single …


Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres Aug 2014

Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres

Doctoral Dissertations

Proteins have the capacity to bind specific sets of compounds known as ligands, these are small molecules with a recurrent theme in their molecular design that is a characteristic exploited here to (i) identify particular affinities of small molecules for proteins with the aim of using them as ligands, inhibitors, or targeting moieties in more complex systems by means of a methodology that screens small molecules based on protein affinity; (ii) decorate a self-assembling supramolecular system at different positions, making it responsive to a complementary protein with the aim of exploring differences in disassembly and sensitivity of the release of …


An Investigation Of Poly(N-Isopropylacrylamide) For Applications With Microfluidic Paper-Based Analytical Devices, Haydn Thomas Mitchell Jun 2014

An Investigation Of Poly(N-Isopropylacrylamide) For Applications With Microfluidic Paper-Based Analytical Devices, Haydn Thomas Mitchell

Master's Theses

N,N′-methylenebisacrylamide-crosslinked poly(N-isopropylacrylamide), also known as P(NIPAM), was developed as a fluid delivery system for use with microfluidic paper-based analytical devices (microPADs). MicroPADs are postage-stamp-sized devices made out of paper that can be used as platforms for low-cost, simple-to-use point-of-care diagnostic assays. P(NIPAM) is a thermally responsive polymer that absorbs aqueous solutions at room temperature and will expel the solutions to microPADs when heated. The fluid delivery characteristics of P(NIPAM) were assessed, and P(NIPAM) was able to deliver multiple solutions to microPADs in specific sequences or simultaneously in a laminar-flow configuration. P(NIPAM) was then shown to be suitable …


Reduced Acute Inflammatory Responses To Microgel Conformal Coatings, Amanda W. Bridges, Neetu Singh, Kellie L. Burns, Julia E. Babensee, L. Andrew Lyon, Andrés J. García Jan 2008

Reduced Acute Inflammatory Responses To Microgel Conformal Coatings, Amanda W. Bridges, Neetu Singh, Kellie L. Burns, Julia E. Babensee, L. Andrew Lyon, Andrés J. García

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Implantation of synthetic materials into the body elicits inflammatory host responses that limit medical device integration and biological performance. This inflammatory cascade involves protein adsorption, leukocyte recruitment and activation, cytokine release, and fibrous encapsulation of the implant. We present a coating strategy based on thin films of poly(N-isopropylacrylamide) hydrogel microparticles (i.e. microgels) cross-linked with poly(ethylene glycol) diacrylate. These particles were grafted onto a clinically relevant polymeric material to generate conformal coatings that significantly reduced in vitro fibrinogen adsorption and primary human monocyte/macrophage adhesion and spreading. These microgel coatings also reduced leukocyte adhesion and expression of pro-inflammatory cytokines (TNF-alpha, IL-1 beta, …


Calculations Of The Interactions Of Energetic Ions With Materials For Protection Of Computer Memory And Biological Systems, Myung-Hee Y. Kim Jan 1995

Calculations Of The Interactions Of Energetic Ions With Materials For Protection Of Computer Memory And Biological Systems, Myung-Hee Y. Kim

Dissertations, Theses, and Masters Projects

Theoretical calculations were performed for the propagation and interactions of particles having high atomic numbers and energy through diverse shield materials including polymeric materials and epoxy-bound lunar regolith by using transport codes for laboratory ion beams and the cosmic ray spectrum. Heavy ions fragment and lose energy upon interactions with shielding materials of specified elemental composition, density, and thickness. A fragmenting heavy iron ion produces hundreds of isotopes during nuclear reactions, which are treated in the solution of the transport problem used here. A reduced set of 80 isotopes is sufficient to represent the charge distribution, but a minimum of …