Open Access. Powered by Scholars. Published by Universities.®

Systems Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Systems Biology

Are Immune Modulating Single Nucleotide Polymorphisms Associated With Necrotizing Enterocolitis?, Ashanti L Franklin, Mariam Said, Clint D Cappiello, Heather Gordish-Dressman, Zohreh Tatari-Calderone, Stanislav Vukmanovic, Khodayar Rais-Bahrami, Naomi L C Luban, Joseph M Devaney, Anthony D Sandler Dec 2015

Are Immune Modulating Single Nucleotide Polymorphisms Associated With Necrotizing Enterocolitis?, Ashanti L Franklin, Mariam Said, Clint D Cappiello, Heather Gordish-Dressman, Zohreh Tatari-Calderone, Stanislav Vukmanovic, Khodayar Rais-Bahrami, Naomi L C Luban, Joseph M Devaney, Anthony D Sandler

Genomics and Precision Medicine Faculty Publications

Necrotizing enterocolitis (NEC) is a devastating gastrointestinal emergency. The purpose of this study is to determine if functional single nucleotide polymorphisms (SNPs) in immune-modulating genes pre-dispose infants to NEC. After Institutional Review Board approval and parental consent, buccal swabs were collected for DNA extraction. TaqMan allelic discrimination assays and BglII endonuclease digestion were used to genotype specific inflammatory cytokines and TRIM21. Statistical analysis was completed using logistic regression. 184 neonates were analyzed in the study. Caucasian neonates with IL-6 (rs1800795) were over 6 times more likely to have NEC (p = 0.013; OR = 6.61, 95% CI 1.48-29.39), and over …


Age-Associated Methylation Suppresses Spry1, Leading To A Failure Of Re-Quiescence And Loss Of The Reserve Stem Cell Pool In Elderly Muscle., Anne Bigot, William J Duddy, Zamalou G Ouandaogo, Elisa Negroni, Virginie Mariot, Svetlana Ghimbovschi, Brennan Harmon, Aurore Wielgosik, Camille Loiseau, Joseph Devaney, Julie Dumonceaux, Gillian Butler-Browne, Vincent Mouly, Stéphanie Duguez Nov 2015

Age-Associated Methylation Suppresses Spry1, Leading To A Failure Of Re-Quiescence And Loss Of The Reserve Stem Cell Pool In Elderly Muscle., Anne Bigot, William J Duddy, Zamalou G Ouandaogo, Elisa Negroni, Virginie Mariot, Svetlana Ghimbovschi, Brennan Harmon, Aurore Wielgosik, Camille Loiseau, Joseph Devaney, Julie Dumonceaux, Gillian Butler-Browne, Vincent Mouly, Stéphanie Duguez

Genomics and Precision Medicine Faculty Publications

The molecular mechanisms by which aging affects stem cell number and function are poorly understood. Murine data have implicated cellular senescence in the loss of muscle stem cells with aging. Here, using human cells and by carrying out experiments within a strictly pre-senescent division count, we demonstrate an impaired capacity for stem cell self-renewal in elderly muscle. We link aging to an increased methylation of the SPRY1 gene, a known regulator of muscle stem cell quiescence. Replenishment of the reserve cell pool was modulated experimentally by demethylation or siRNA knockdown of SPRY1. We propose that suppression of SPRY1 by age-associated …