Open Access. Powered by Scholars. Published by Universities.®

Systems Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins

Himmelfarb Health Sciences Library, The George Washington University

2015

Articles 1 - 1 of 1

Full-Text Articles in Systems Biology

Tnf-Α-Induced Micrornas Control Dystrophin Expression In Becker Muscular Dystrophy., Alyson A. Fiorillo, Christopher R. Heier, James S. Novak, Christopher B. Tully, Kristy J. Brown, Kitipong Uaesoontrachoon, Maria C. Vila, Peter P. Ngheim, Luca Bello, Joe N. Kornegay, Corrado Angelini, Terence A. Partridge, Kanneboyina Nagaraju, Eric P. Hoffman Sep 2015

Tnf-Α-Induced Micrornas Control Dystrophin Expression In Becker Muscular Dystrophy., Alyson A. Fiorillo, Christopher R. Heier, James S. Novak, Christopher B. Tully, Kristy J. Brown, Kitipong Uaesoontrachoon, Maria C. Vila, Peter P. Ngheim, Luca Bello, Joe N. Kornegay, Corrado Angelini, Terence A. Partridge, Kanneboyina Nagaraju, Eric P. Hoffman

Genomics and Precision Medicine Faculty Publications

The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45–47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low …